BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29977338)

  • 1. Characterization of chromosome composition of sugarcane in nobilization by using genomic in situ hybridization.
    Yu F; Wang P; Li X; Huang Y; Wang Q; Luo L; Jing Y; Liu X; Deng Z; Wu J; Yang Y; Chen R; Zhang M; Xu L
    Mol Cytogenet; 2018; 11():35. PubMed ID: 29977338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All nonhomologous chromosomes and rearrangements in
    Chai J; Xue L; Lei J; Yao W; Zhang M; Deng Z; Yu F
    Front Plant Sci; 2023; 14():1176914. PubMed ID: 37868320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars.
    Wang K; Cheng H; Han J; Esh A; Liu J; Zhang Y; Wang B
    Chromosome Res; 2022 Mar; 30(1):29-41. PubMed ID: 34988746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome behavior during meiosis in pollen mother cells from Saccharum officinarum × Erianthus arundinaceus F
    Li X; Huang F; Chai J; Wang Q; Yu F; Huang Y; Wu J; Wang Q; Xu L; Zhang M; Deng Z
    BMC Plant Biol; 2021 Mar; 21(1):139. PubMed ID: 33726673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane.
    Piperidis G; Piperidis N; D'Hont A
    Mol Genet Genomics; 2010 Jul; 284(1):65-73. PubMed ID: 20532565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Analysis of Homologous Sequences of
    Sharma A; Song J; Lin Q; Singh R; Ramos N; Wang K; Zhang J; Ming R; Yu Q
    Front Plant Sci; 2018; 9():1414. PubMed ID: 30319674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum.
    Zhang J; Sharma A; Yu Q; Wang J; Li L; Zhu L; Zhang X; Chen Y; Ming R
    BMC Genomics; 2016 Jun; 17():446. PubMed ID: 27287040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosome Painting Provides Insights Into the Genome Structure and Evolution of Sugarcane.
    Meng Z; Wang Q; Khurshid H; Raza G; Han J; Wang B; Wang K
    Front Plant Sci; 2021; 12():731664. PubMed ID: 34512706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics.
    D'Hont A; Grivet L; Feldmann P; Rao S; Berding N; Glaszmann JC
    Mol Gen Genet; 1996 Mar; 250(4):405-13. PubMed ID: 8602157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unexpected inheritance pattern of Erianthus arundinaceus chromosomes in the intergeneric progeny between Saccharum spp. and Erianthus arundinaceus.
    Wu J; Huang Y; Lin Y; Fu C; Liu S; Deng Z; Li Q; Huang Z; Chen R; Zhang M
    PLoS One; 2014; 9(10):e110390. PubMed ID: 25310831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GISH characterization of Erianthus arundinaceus chromosomes in three generations of sugarcane intergeneric hybrids.
    Piperidis N; Chen JW; Deng HH; Wang LP; Jackson P; Piperidis G
    Genome; 2010 May; 53(5):331-6. PubMed ID: 20616864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential detection of transposable elements between Saccharum species.
    de Souza MC; Silva JN; Almeida C
    Genet Mol Biol; 2013 Sep; 36(3):408-12. PubMed ID: 24130449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugarcane genome architecture decrypted with chromosome-specific oligo probes.
    Piperidis N; D'Hont A
    Plant J; 2020 Sep; 103(6):2039-2051. PubMed ID: 32537783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome remodelling in three modern S. officinarumxS. spontaneum sugarcane cultivars.
    Cuadrado A; Acevedo R; Moreno Díaz de la Espina S; Jouve N; de la Torre C
    J Exp Bot; 2004 Apr; 55(398):847-54. PubMed ID: 14990623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic variability among the chloroplast genomes of sugarcane (Saccharum spp) and its wild progenitor species Saccharum spontaneum L.
    Zhu JR; Zhou H; Pan YB; Lu X
    Genet Mol Res; 2014 Jan; 13(2):3037-47. PubMed ID: 24615073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars.
    Huang Y; Chen H; Han J; Zhang Y; Ma S; Yu G; Wang Z; Wang K
    Chromosoma; 2020 Mar; 129(1):45-55. PubMed ID: 31848693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a Saccharum spontaneum with a basic chromosome number of x = 10 provides new insights on genome evolution in genus Saccharum.
    Meng Z; Han J; Lin Y; Zhao Y; Lin Q; Ma X; Wang J; Zhang M; Zhang L; Yang Q; Wang K
    Theor Appl Genet; 2020 Jan; 133(1):187-199. PubMed ID: 31587087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long read transcriptome sequencing of a sugarcane hybrid and its progenitors,
    Thirugnanasambandam PP; Singode A; Thalambedu LP; Athiappan S; Krishnasamy M; Purakkal SV; Govind H; Furtado A; Henry R
    Front Plant Sci; 2023; 14():1199748. PubMed ID: 37662143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical genetic markers in sugarcane.
    Glaszmann JC; Fautret A; Noyer JL; Feldmann P; Lanaud C
    Theor Appl Genet; 1989 Oct; 78(4):537-43. PubMed ID: 24225682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of male sterility-related genes in Saccharum officinarum and Saccharum spontaneum.
    Song J; Zhang X; Jones T; Wang ML; Ming R
    Plant Reprod; 2024 Jun; ():. PubMed ID: 38844561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.