These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 29977931)
1. LCK as a Potential Therapeutic Target for Acute Rejection after Kidney Transplantation: A Bioinformatics Clue. Jia L; Jia R; Li Y; Li X; Jia Q; Zhang H J Immunol Res; 2018; 2018():6451298. PubMed ID: 29977931 [TBL] [Abstract][Full Text] [Related]
2. Identification of potential key protein interaction networks of BK virus nephropathy in patients receiving kidney transplantation. Jia L; Fu W; Jia R; Wu L; Li X; Jia Q; Zhang H Sci Rep; 2018 Mar; 8(1):5017. PubMed ID: 29567951 [TBL] [Abstract][Full Text] [Related]
3. CCR7 and CD48 as Predicted Targets in Acute Rejection Related to M1 Macrophage after Pediatric Kidney Transplantation. Zhang J; Pei J; Yu C; Luo J; Hong Y; Hua Y; Wei G J Immunol Res; 2024; 2024():6908968. PubMed ID: 38957433 [TBL] [Abstract][Full Text] [Related]
4. Construction of an immunorelated protein-protein interaction network for clarifying the mechanism of burn. Gao Y; Nai W; Yang L; Lu Z; Shi P; Jin H; Wen H; Wang G Burns; 2016 Mar; 42(2):405-13. PubMed ID: 26739088 [TBL] [Abstract][Full Text] [Related]
5. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma. Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538 [TBL] [Abstract][Full Text] [Related]
6. Identification of PDCD1 as a potential biomarker in acute rejection after kidney transplantation Wang Y; Lin X; Wang C; Liu X; Wu X; Qiu Y; Chen Y; Zhou Q; Zhao H; Chen J; Huang H Front Immunol; 2022; 13():1076546. PubMed ID: 36776400 [TBL] [Abstract][Full Text] [Related]
7. Computational Prediction of Biomarkers, Pathways, and New Target Drugs in the Pathogenesis of Immune-Based Diseases Regarding Kidney Transplantation Rejection. Alfaro R; Martínez-Banaclocha H; Llorente S; Jimenez-Coll V; Galián JA; Botella C; Moya-Quiles MR; Parrado A; Muro-Perez M; Minguela A; Legaz I; Muro M Front Immunol; 2021; 12():800968. PubMed ID: 34975915 [TBL] [Abstract][Full Text] [Related]
8. Bioinformatics analysis of gene expression profile data to screen key genes involved in intracranial aneurysms. Guo T; Hou D; Yu D Mol Med Rep; 2019 Nov; 20(5):4415-4424. PubMed ID: 31545495 [TBL] [Abstract][Full Text] [Related]
9. Bioinformatics analyses of gene expression profile identify key genes and functional pathways involved in cutaneous lupus erythematosus. Gao ZY; Su LC; Wu QC; Sheng JE; Wang YL; Dai YF; Chen AP; He SS; Huang X; Yan GQ Clin Rheumatol; 2022 Feb; 41(2):437-452. PubMed ID: 34553293 [TBL] [Abstract][Full Text] [Related]
10. Bioinformatics Analysis Identifies Hub Genes and Molecular Pathways Involved in Sepsis-Induced Myopathy. Ning YL; Yang ZQ; Xian SX; Lin JZ; Lin XF; Chen WT Med Sci Monit; 2020 Feb; 26():e919665. PubMed ID: 32008037 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomics-based exploration of shared M1-type macrophage-related biomarker in acute kidney injury after kidney transplantation and acute rejection after kidney transplantation. Pei J; Zhang J; Yu C; Luo J; Wen S; Hua Y; Wei G Transpl Immunol; 2024 Aug; 85():102066. PubMed ID: 38815767 [TBL] [Abstract][Full Text] [Related]
12. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer. Yang C; Gong A Int J Med Sci; 2021; 18(3):792-800. PubMed ID: 33437215 [No Abstract] [Full Text] [Related]
13. Identification and Functional Enrichment Analysis of Potential Diagnostic and Therapeutic Targets in Adamantinomatous Craniopharyngioma. Zou YF; Meng LB; Wang QQ; He ZK; Hu CH; Shan MJ; Wang DY; Yu X J Comput Biol; 2020 Jan; 27(1):55-68. PubMed ID: 31424286 [TBL] [Abstract][Full Text] [Related]
14. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer. Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036 [TBL] [Abstract][Full Text] [Related]
15. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data. Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134 [TBL] [Abstract][Full Text] [Related]
16. Integrative analysis of promising molecular biomarkers and pathways for coronary artery disease using WGCNA and MetaDE methods. Yan S Mol Med Rep; 2018 Sep; 18(3):2789-2797. PubMed ID: 30015926 [TBL] [Abstract][Full Text] [Related]
17. Bioinformatics analysis of fibroblasts exposed to TGF‑β at the early proliferation phase of wound repair. Mi B; Liu G; Zhou W; Lv H; Zha K; Liu Y; Wu Q; Liu J Mol Med Rep; 2017 Dec; 16(6):8146-8154. PubMed ID: 28983581 [TBL] [Abstract][Full Text] [Related]
18. CD3D and CD247 are the molecular targets of septic shock. Yang Q; Feng Z; Ding D; Kang C Medicine (Baltimore); 2023 Jul; 102(29):e34295. PubMed ID: 37478215 [TBL] [Abstract][Full Text] [Related]
19. Identification of pivotal genes and pathways for spinal cord injury via bioinformatics analysis. Zhu Z; Shen Q; Zhu L; Wei X Mol Med Rep; 2017 Oct; 16(4):3929-3937. PubMed ID: 28731189 [TBL] [Abstract][Full Text] [Related]
20. Bioinformatics Analysis and Identification of Genes and Molecular Pathways Involved in Venous Thromboembolism (VTE). Lu S; Lijuan R; Tang QH; Liu QL; Xian-Lan Z Ann Vasc Surg; 2021 Jul; 74():389-399. PubMed ID: 33819580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]