These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 29978157)
1. Capacity fading mechanism of tin phosphide anodes in sodium-ion batteries. Mogensen R; Maibach J; Naylor AJ; Younesi R Dalton Trans; 2018 Aug; 47(31):10752-10758. PubMed ID: 29978157 [TBL] [Abstract][Full Text] [Related]
2. A Sodium Bis(fluorosulfonyl)imide (NaFSI)-based Multifunctional Electrolyte Stabilizes the Performance of NaNi Fan W; Wang W; Xie Q; He X; Li H; Zhao J; Nan J Chemistry; 2024 Aug; 30(43):e202401321. PubMed ID: 38801410 [TBL] [Abstract][Full Text] [Related]
3. Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries. Young BT; Heskett DR; Nguyen CC; Nie M; Woicik JC; Lucht BL ACS Appl Mater Interfaces; 2015 Sep; 7(36):20004-11. PubMed ID: 26305165 [TBL] [Abstract][Full Text] [Related]
4. Fluoroethylene Carbonate-Based Electrolyte with 1 M Sodium Bis(fluorosulfonyl)imide Enables High-Performance Sodium Metal Electrodes. Lee Y; Lee J; Lee J; Kim K; Cha A; Kang S; Wi T; Kang SJ; Lee HW; Choi NS ACS Appl Mater Interfaces; 2018 May; 10(17):15270-15280. PubMed ID: 29648435 [TBL] [Abstract][Full Text] [Related]
5. Effect of Conducting Salts in Ionic Liquid Electrolytes for Enhanced Cyclability of Sodium-Ion Batteries. Do MP; Bucher N; Nagasubramanian A; Markovits I; Bingbing T; Fischer PJ; Loh KP; Kühn FE; Srinivasan M ACS Appl Mater Interfaces; 2019 Jul; 11(27):23972-23981. PubMed ID: 31251014 [TBL] [Abstract][Full Text] [Related]
6. Unravelling the anionic stability of an ether-based electrolyte with a hard carbon or metallic sodium anode for high-performance sodium-ion batteries. He J; Fu Y; Xie Z; Xia Z; Chen Y; Deng Y; Guo J; Lin J; Kuai Y; Li W J Colloid Interface Sci; 2025 Jan; 678(Pt C):515-525. PubMed ID: 39305619 [TBL] [Abstract][Full Text] [Related]
7. Influence of KPF Deng L; Zhang Y; Wang R; Feng M; Niu X; Tan L; Zhu Y ACS Appl Mater Interfaces; 2019 Jun; 11(25):22449-22456. PubMed ID: 31150200 [TBL] [Abstract][Full Text] [Related]
8. An Electrolyte for Reversible Cycling of Sodium Metal and Intercalation Compounds. Schafzahl L; Hanzu I; Wilkening M; Freunberger SA ChemSusChem; 2017 Jan; 10(2):401-408. PubMed ID: 27860417 [TBL] [Abstract][Full Text] [Related]
9. SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries. Lindgren F; Xu C; Niedzicki L; Marcinek M; Gustafsson T; Björefors F; Edström K; Younesi R ACS Appl Mater Interfaces; 2016 Jun; 8(24):15758-66. PubMed ID: 27220376 [TBL] [Abstract][Full Text] [Related]
11. Stable and Unstable Diglyme-Based Electrolytes for Batteries with Sodium or Graphite as Electrode. Goktas M; Bolli C; Buchheim J; Berg EJ; Novák P; Bonilla F; Rojo T; Komaba S; Kubota K; Adelhelm P ACS Appl Mater Interfaces; 2019 Sep; 11(36):32844-32855. PubMed ID: 31397560 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive Insights into the Reactivity of Electrolytes Based on Sodium Ions. Eshetu GG; Grugeon S; Kim H; Jeong S; Wu L; Gachot G; Laruelle S; Armand M; Passerini S ChemSusChem; 2016 Mar; 9(5):462-71. PubMed ID: 26834069 [TBL] [Abstract][Full Text] [Related]
13. Tuning Sodium Interfacial Chemistry with Mixed-Anion Ionic Liquid Electrolytes. Forsyth M; Hilder M; Zhang Y; Chen F; Carre L; Rakov DA; Armand M; Macfarlane DR; Pozo-Gonzalo C; Howlett PC ACS Appl Mater Interfaces; 2019 Nov; 11(46):43093-43106. PubMed ID: 31701752 [TBL] [Abstract][Full Text] [Related]
14. Ultraconcentrated Sodium Bis(fluorosulfonyl)imide-Based Electrolytes for High-Performance Sodium Metal Batteries. Lee J; Lee Y; Lee J; Lee SM; Choi JH; Kim H; Kwon MS; Kang K; Lee KT; Choi NS ACS Appl Mater Interfaces; 2017 Feb; 9(4):3723-3732. PubMed ID: 28067499 [TBL] [Abstract][Full Text] [Related]
15. Surface Layer Evolution on Graphite During Electrochemical Sodium-tetraglyme Co-intercalation. Maibach J; Jeschull F; Brandell D; Edström K; Valvo M ACS Appl Mater Interfaces; 2017 Apr; 9(14):12373-12381. PubMed ID: 28338314 [TBL] [Abstract][Full Text] [Related]
16. Fundamental Understanding and Quantification of Capacity Losses Involving the Negative Electrode in Sodium-Ion Batteries. Ma LA; Buckel A; Hofmann A; Nyholm L; Younesi R Adv Sci (Weinh); 2024 Feb; 11(6):e2306771. PubMed ID: 38059817 [TBL] [Abstract][Full Text] [Related]
18. An advanced MoS2 /carbon anode for high-performance sodium-ion batteries. Wang J; Luo C; Gao T; Langrock A; Mignerey AC; Wang C Small; 2015 Jan; 11(4):473-81. PubMed ID: 25256131 [TBL] [Abstract][Full Text] [Related]
19. Achieving the Inhibition of Aluminum Corrosion by Dual-Salt Electrolytes for Sodium-Ion Batteries. Huang L; Qiu Q; Yang M; Li H; Zhu J; Zhang W; Wang S; Xia L; Müller-Buschbaum P ACS Appl Mater Interfaces; 2024 Sep; 16(35):46392-46400. PubMed ID: 39172040 [TBL] [Abstract][Full Text] [Related]
20. Fluorinated Ether Based Electrolyte Enabling Sodium-Metal Batteries with Exceptional Cycling Stability. Yi Q; Lu Y; Sun X; Zhang H; Yu H; Sun C ACS Appl Mater Interfaces; 2019 Dec; 11(50):46965-46972. PubMed ID: 31742374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]