BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29978215)

  • 1. Association of Space Flight With Problems of the Brain and Eyes.
    Shinojima A; Kakeya I; Tada S
    JAMA Ophthalmol; 2018 Sep; 136(9):1075-1076. PubMed ID: 29978215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight.
    Mader TH; Gibson CR; Pass AF; Kramer LA; Lee AG; Fogarty J; Tarver WJ; Dervay JP; Hamilton DR; Sargsyan A; Phillips JL; Tran D; Lipsky W; Choi J; Stern C; Kuyumjian R; Polk JD
    Ophthalmology; 2011 Oct; 118(10):2058-69. PubMed ID: 21849212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term follow-up of optic neuropathy in chronic low cerebrospinal fluid pressure monkeys: the Beijing Intracranial and Intraocular Pressure (iCOP) Study.
    Li J; Yang D; Kwong JMK; Fu J; Hou R; Jonas JB; Wang H; Zhang Z; Chen W; Li Z; Sang J; Xie X; Ren R; Weinreb RN; Wang N
    Sci China Life Sci; 2020 Nov; 63(11):1762-1765. PubMed ID: 32567001
    [No Abstract]   [Full Text] [Related]  

  • 4. Space flight-associated neuro-ocular syndrome (SANS).
    Lee AG; Mader TH; Gibson CR; Brunstetter TJ; Tarver WJ
    Eye (Lond); 2018 Jul; 32(7):1164-1167. PubMed ID: 29527011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraocular and optic nerve sheath hemorrhage in cases of sudden intracranial hypertension.
    Muller PJ; Deck JH
    J Neurosurg; 1974 Aug; 41(2):160-6. PubMed ID: 4366848
    [No Abstract]   [Full Text] [Related]  

  • 6. Pressure and velocity in intraocular and subarachnoid space fluid chambers: an inseparable couple.
    Killer HE; Hou R; Wostyn P; Meyer P; Pircher A
    Eye (Lond); 2019 Mar; 33(3):343-346. PubMed ID: 30315263
    [No Abstract]   [Full Text] [Related]  

  • 7. Intracranial and Intraocular Pressure at the Lamina Cribrosa: Gradient Effects.
    Jóhannesson G; Eklund A; Lindén C
    Curr Neurol Neurosci Rep; 2018 Apr; 18(5):25. PubMed ID: 29651628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The translaminar pressure gradient in sustained zero gravity, idiopathic intracranial hypertension, and glaucoma.
    Berdahl JP; Yu DY; Morgan WH
    Med Hypotheses; 2012 Dec; 79(6):719-24. PubMed ID: 22981592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural damage to the rat eye following long-term simulated weightlessness.
    Li S; Song Q; Wu B; Kan G; Wang F; Yang J; Zhu S
    Exp Eye Res; 2022 Oct; 223():109200. PubMed ID: 35932903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure.
    Morgan WH; Yu DY; Alder VA; Cringle SJ; Cooper RL; House PH; Constable IJ
    Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1419-28. PubMed ID: 9660490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volumetric Ophthalmic Ultrasound for Inflight Monitoring of Visual Impairment and Intracranial Pressure.
    Dentinger A; MacDonald M; Ebert D; Garcia K; Sargsyan A
    Acta Neurochir Suppl; 2018; 126():97-101. PubMed ID: 29492541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient.
    Morgan WH; Yu DY; Cooper RL; Alder VA; Cringle SJ; Constable IJ
    Invest Ophthalmol Vis Sci; 1995 May; 36(6):1163-72. PubMed ID: 7730025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of Translaminar Pressure Gradient and Intracranial Pressure in Glaucoma: A Review.
    Price DA; Harris A; Siesky B; Mathew S
    J Glaucoma; 2020 Feb; 29(2):141-146. PubMed ID: 31809396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discussion: future directions.
    De Moraes CG
    J Glaucoma; 2013; 22 Suppl 5():S51-3. PubMed ID: 23733130
    [No Abstract]   [Full Text] [Related]  

  • 15. Current concepts of cerebrospinal fluid dynamics and the translaminar cribrosa pressure gradient: a paradigm of optic disk disease.
    Liu KC; Fleischman D; Lee AG; Killer HE; Chen JJ; Bhatti MT
    Surv Ophthalmol; 2020; 65(1):48-66. PubMed ID: 31449832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of ocular hemodynamics and intracranial pressure on intraocular pressure during acute gravitational changes.
    Nelson ES; Mulugeta L; Feola A; Raykin J; Myers JG; Samuels BC; Ethier CR
    J Appl Physiol (1985); 2017 Aug; 123(2):352-363. PubMed ID: 28495842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orbital cerebrospinal fluid space in glaucoma.
    Killer HE; Jaggi G
    Ophthalmology; 2013 Jun; 120(6):e30-1. PubMed ID: 23732063
    [No Abstract]   [Full Text] [Related]  

  • 18. Dynein, kinesin and morphological changes in optic nerve axons in a rat model with cerebrospinal fluid pressure reduction: the Beijing Intracranial and Intraocular Pressure (iCOP) study.
    Zhang Z; Wu S; Jonas JB; Zhang J; Liu K; Lu Q; Wang N
    Acta Ophthalmol; 2016 May; 94(3):266-75. PubMed ID: 26178710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient.
    Shin DH
    Invest Ophthalmol Vis Sci; 1995 Oct; 36(11):2163-4. PubMed ID: 7558708
    [No Abstract]   [Full Text] [Related]  

  • 20. Intraocular/Intracranial pressure mismatch hypothesis for visual impairment syndrome in space.
    Zhang LF; Hargens AR
    Aviat Space Environ Med; 2014 Jan; 85(1):78-80. PubMed ID: 24479265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.