These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29978264)

  • 21. The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst.
    Caffarra A; Donnelly A
    Int J Biometeorol; 2011 Sep; 55(5):711-21. PubMed ID: 21113629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inter-Individual Budburst Variation in
    Malyshev AV; van der Maaten E; Garthen A; Maß D; Schwabe M; Kreyling J
    Front Plant Sci; 2022; 13():853521. PubMed ID: 35498678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light pollution is associated with earlier tree budburst across the United Kingdom.
    Ffrench-Constant RH; Somers-Yeates R; Bennie J; Economou T; Hodgson D; Spalding A; McGregor PK
    Proc Biol Sci; 2016 Jun; 283(1833):. PubMed ID: 27358370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees.
    Heide OM
    Physiol Plant; 1993 Aug; 88(4):531-540. PubMed ID: 28741760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of ground-based methods for obtaining large-scale, high-resolution data on the spring leaf phenology of temperate tree species.
    Smith AM; Ramsay PM
    Int J Biometeorol; 2020 Mar; 64(3):521-531. PubMed ID: 31834494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Late spring freezes coupled with warming winters alter temperate tree phenology and growth.
    Chamberlain CJ; Wolkovich EM
    New Phytol; 2021 Aug; 231(3):987-995. PubMed ID: 33932291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Night interruption provides evidence for photoperiodic regulation of bud burst in Japanese beech,
    Ohno M; Yamawo A
    Plant Signal Behav; 2021 Dec; 16(12):1982562. PubMed ID: 34632946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wood structural differences between northern and southern beech provenances growing at a moderate site.
    Eilmann B; Sterck F; Wegner L; de Vries SM; von Arx G; Mohren GM; den Ouden J; Sass-Klaassen U
    Tree Physiol; 2014 Aug; 34(8):882-93. PubMed ID: 25163729
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.
    Michelot A; Simard S; Rathgeber C; Dufrêne E; Damesin C
    Tree Physiol; 2012 Aug; 32(8):1033-45. PubMed ID: 22718524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control?
    Charrier G; Bonhomme M; Lacointe A; Améglio T
    Int J Biometeorol; 2011 Nov; 55(6):763-74. PubMed ID: 21805380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Feasting on the ordinary or starving for the exceptional in a warming climate: Phenological synchrony between spongy moth (
    Vitasse Y; Pohl N; Walde MG; Nadel H; Gossner MM; Baumgarten F
    Ecol Evol; 2024 Feb; 14(2):e10928. PubMed ID: 38371870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature and photoperiod drive spring phenology across all species in a temperate forest community.
    Flynn DFB; Wolkovich EM
    New Phytol; 2018 Sep; 219(4):1353-1362. PubMed ID: 29870050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variation in the phenology of photosynthesis among eastern white pine provenances in response to warming.
    Fréchette E; Chang CY; Ensminger I
    Glob Chang Biol; 2020 Sep; 26(9):5217-5234. PubMed ID: 32396692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chilled to be forced: the best dose to wake up buds from winter dormancy.
    Baumgarten F; Zohner CM; Gessler A; Vitasse Y
    New Phytol; 2021 May; 230(4):1366-1377. PubMed ID: 33577087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial and temporal shifts in photoperiod with climate change.
    Ettinger AK; Buonaiuto DM; Chamberlain CJ; Morales-Castilla I; Wolkovich EM
    New Phytol; 2021 Apr; 230(2):462-474. PubMed ID: 33421152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Interactive Effects of Chilling, Photoperiod, and Forcing Temperature on Flowering Phenology of Temperate Woody Plants.
    Wang H; Wang H; Ge Q; Dai J
    Front Plant Sci; 2020; 11():443. PubMed ID: 32373144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The minimum temperature for budburst in Betula depends on the state of dormancy.
    Junttila O; Hänninen H
    Tree Physiol; 2012 Mar; 32(3):337-45. PubMed ID: 22391009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulating the onset of spring vegetation growth across the Northern Hemisphere.
    Liu Q; Fu YH; Liu Y; Janssens IA; Piao S
    Glob Chang Biol; 2018 Mar; 24(3):1342-1356. PubMed ID: 29055157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir.
    Ford KR; Harrington CA; Bansal S; Gould PJ; St Clair JB
    Glob Chang Biol; 2016 Nov; 22(11):3712-3723. PubMed ID: 27104650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Warming nondormant tree roots advances aboveground spring phenology in temperate trees.
    Malyshev AV; Blume-Werry G; Spiller O; Smiljanić M; Weigel R; Kolb A; Nze BY; Märker F; Sommer FCJ; Kinley K; Ziegler J; Pasang P; Mahara R; Joshi S; Heinsohn V; Kreyling J
    New Phytol; 2023 Dec; 240(6):2276-2287. PubMed ID: 37897071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.