These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 29978483)
1. Leaf rehydration capacity: Associations with other indices of drought tolerance and environment. John GP; Henry C; Sack L Plant Cell Environ; 2018 Nov; 41(11):2638-2653. PubMed ID: 29978483 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state. Scoffoni C; McKown AD; Rawls M; Sack L J Exp Bot; 2012 Jan; 63(2):643-58. PubMed ID: 22016424 [TBL] [Abstract][Full Text] [Related]
3. Thresholds for leaf damage due to dehydration: declines of hydraulic function, stomatal conductance and cellular integrity precede those for photochemistry. Trueba S; Pan R; Scoffoni C; John GP; Davis SD; Sack L New Phytol; 2019 Jul; 223(1):134-149. PubMed ID: 30843202 [TBL] [Abstract][Full Text] [Related]
4. Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance. Scoffoni C; Vuong C; Diep S; Cochard H; Sack L Plant Physiol; 2014 Apr; 164(4):1772-88. PubMed ID: 24306532 [TBL] [Abstract][Full Text] [Related]
5. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions. Pivovaroff AL; Cook VMW; Santiago LS Plant Cell Environ; 2018 Nov; 41(11):2617-2626. PubMed ID: 29904932 [TBL] [Abstract][Full Text] [Related]
7. Evolution of leaf structure and drought tolerance in species of Californian Ceanothus. Fletcher LR; Cui H; Callahan H; Scoffoni C; John GP; Bartlett MK; Burge DO; Sack L Am J Bot; 2018 Oct; 105(10):1672-1687. PubMed ID: 30368798 [TBL] [Abstract][Full Text] [Related]
8. Leaf rolling precedes stomatal closure in rice (Oryza sativa) under drought conditions. Wang X; Huang J; Peng S; Xiong D J Exp Bot; 2023 Nov; 74(21):6650-6661. PubMed ID: 37551729 [TBL] [Abstract][Full Text] [Related]
9. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. Eller CB; Lima AL; Oliveira RS New Phytol; 2016 Jul; 211(2):489-501. PubMed ID: 27038126 [TBL] [Abstract][Full Text] [Related]
10. Species climate range influences hydraulic and stomatal traits in Eucalyptus species. Bourne AE; Creek D; Peters JMR; Ellsworth DS; Choat B Ann Bot; 2017 Jul; 120(1):123-133. PubMed ID: 28369162 [TBL] [Abstract][Full Text] [Related]
11. Predicting Stomatal Closure and Turgor Loss in Woody Plants Using Predawn and Midday Water Potential. Knipfer T; Bambach N; Hernandez MI; Bartlett MK; Sinclair G; Duong F; Kluepfel DA; McElrone AJ Plant Physiol; 2020 Oct; 184(2):881-894. PubMed ID: 32764130 [TBL] [Abstract][Full Text] [Related]
12. Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species. Blackman CJ; Brodribb TJ; Jordan GJ Plant Cell Environ; 2009 Nov; 32(11):1584-95. PubMed ID: 19627564 [TBL] [Abstract][Full Text] [Related]
13. A stomatal safety-efficiency trade-off constrains responses to leaf dehydration. Henry C; John GP; Pan R; Bartlett MK; Fletcher LR; Scoffoni C; Sack L Nat Commun; 2019 Jul; 10(1):3398. PubMed ID: 31363097 [TBL] [Abstract][Full Text] [Related]
14. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Zhu SD; Chen YJ; Ye Q; He PC; Liu H; Li RH; Fu PL; Jiang GF; Cao KF Tree Physiol; 2018 May; 38(5):658-663. PubMed ID: 29474684 [TBL] [Abstract][Full Text] [Related]
15. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Li X; Blackman CJ; Choat B; Duursma RA; Rymer PD; Medlyn BE; Tissue DT Plant Cell Environ; 2018 Mar; 41(3):646-660. PubMed ID: 29314083 [TBL] [Abstract][Full Text] [Related]
16. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Bartlett MK; Scoffoni C; Sack L Ecol Lett; 2012 May; 15(5):393-405. PubMed ID: 22435987 [TBL] [Abstract][Full Text] [Related]
17. Safety-efficiency tradeoffs? Correlations of photosynthesis, leaf hydraulics, and dehydration tolerance across species. Xiong D; Flexas J Oecologia; 2022 Oct; 200(1-2):51-64. PubMed ID: 36040668 [TBL] [Abstract][Full Text] [Related]
18. Responses of Prunus ferganensis, Prunus persica and two interspecific hybrids to moderate drought stress. Rieger M; Lo Bianco R; Okie WR Tree Physiol; 2003 Jan; 23(1):51-8. PubMed ID: 12511304 [TBL] [Abstract][Full Text] [Related]
19. Water relations in tree physiology: where to from here? Landsberg J; Waring R; Ryan M Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481 [TBL] [Abstract][Full Text] [Related]
20. Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor. Rodriguez-Dominguez CM; Buckley TN; Egea G; de Cires A; Hernandez-Santana V; Martorell S; Diaz-Espejo A Plant Cell Environ; 2016 Sep; 39(9):2014-26. PubMed ID: 27255698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]