These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 29978515)
1. Hidden Structure Ordering Along Backbone of Fused-Ring Electron Acceptors Enhanced by Ternary Bulk Heterojunction. Mai J; Xiao Y; Zhou G; Wang J; Zhu J; Zhao N; Zhan X; Lu X Adv Mater; 2018 Jul; ():e1802888. PubMed ID: 29978515 [TBL] [Abstract][Full Text] [Related]
2. Fused-Ring Electron Acceptors for Photovoltaics and Beyond. Wang J; Zhan X Acc Chem Res; 2021 Jan; 54(1):132-143. PubMed ID: 33284599 [TBL] [Abstract][Full Text] [Related]
3. Recent Progress in Molecular Design of Fused Ring Electron Acceptors for Organic Solar Cells. Dey S Small; 2019 May; 15(21):e1900134. PubMed ID: 30989808 [TBL] [Abstract][Full Text] [Related]
4. The principles, design and applications of fused-ring electron acceptors. Wang J; Xue P; Jiang Y; Huo Y; Zhan X Nat Rev Chem; 2022 Sep; 6(9):614-634. PubMed ID: 37117709 [TBL] [Abstract][Full Text] [Related]
5. Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells. Ye L; Weng K; Xu J; Du X; Chandrabose S; Chen K; Zhou J; Han G; Tan S; Xie Z; Yi Y; Li N; Liu F; Hodgkiss JM; Brabec CJ; Sun Y Nat Commun; 2020 Nov; 11(1):6005. PubMed ID: 33243982 [TBL] [Abstract][Full Text] [Related]
6. Synergistic Interplay between Asymmetric Backbone Conformation, Molecular Aggregation, and Charge-Carrier Dynamics in Fused-Ring Electron Acceptor-Based Bulk Heterojunction Solar Cells. Song X; Hou L; Guo R; Wei Q; Yang L; Jiang X; Tu S; Zhang A; Kan Z; Tang W; Xing G; Müller-Buschbaum P ACS Appl Mater Interfaces; 2021 Jan; 13(2):2961-2970. PubMed ID: 33412838 [TBL] [Abstract][Full Text] [Related]
7. Recent Advances in Non-Fullerene Acceptors of the IDIC/ITIC Families for Bulk-Heterojunction Organic Solar Cells. Forti G; Nitti A; Osw P; Bianchi G; Po R; Pasini D Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33138257 [TBL] [Abstract][Full Text] [Related]
8. Efficient and Stable Ternary Organic Solar Cells Based on Two Planar Nonfullerene Acceptors with Tunable Crystallinity and Phase Miscibility. Wang J; Peng J; Liu X; Liang Z ACS Appl Mater Interfaces; 2017 Jun; 9(24):20704-20710. PubMed ID: 28570073 [TBL] [Abstract][Full Text] [Related]
9. Non-Fullerene Acceptors with an Extended π-Conjugated Core: Third Components in Ternary Blends for High-Efficiency, Post-Treatment-Free Organic Solar Cells. Avalos-Quiroz YA; Bardagot O; Kervella Y; Aumaître C; Cabau L; Rivaton A; Margeat O; Videlot-Ackermann C; Vongsaysy U; Ackermann J; Demadrille R ChemSusChem; 2021 Sep; 14(17):3502-3510. PubMed ID: 34096201 [TBL] [Abstract][Full Text] [Related]
10. High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics. Lin Y; Zhao F; He Q; Huo L; Wu Y; Parker TC; Ma W; Sun Y; Wang C; Zhu D; Heeger AJ; Marder SR; Zhan X J Am Chem Soc; 2016 Apr; 138(14):4955-61. PubMed ID: 27015115 [TBL] [Abstract][Full Text] [Related]
11. Functionalizing triptycene to create 3D high-performance non-fullerene acceptors. Yang Y; Yao C; Li L; Bo M; Zhang J; Peng C; Wang J RSC Adv; 2020 Mar; 10(20):12004-12012. PubMed ID: 35496598 [TBL] [Abstract][Full Text] [Related]
12. Star-Shaped Fused-Ring Electron Acceptors with a Wu X; Wang W; Hang H; Li H; Chen Y; Xu Q; Tong H; Wang L ACS Appl Mater Interfaces; 2019 Aug; 11(31):28115-28124. PubMed ID: 31296002 [TBL] [Abstract][Full Text] [Related]
13. Fibrillization of Non-Fullerene Acceptors Enables 19% Efficiency Pseudo-Bulk Heterojunction Organic Solar Cells. Li D; Deng N; Fu Y; Guo C; Zhou B; Wang L; Zhou J; Liu D; Li W; Wang K; Sun Y; Wang T Adv Mater; 2023 Feb; 35(6):e2208211. PubMed ID: 36418914 [TBL] [Abstract][Full Text] [Related]
14. Effect of Non-fullerene Acceptors' Side Chains on the Morphology and Photovoltaic Performance of Organic Solar Cells. Zhang C; Feng S; Liu Y; Hou R; Zhang Z; Xu X; Wu Y; Bo Z ACS Appl Mater Interfaces; 2017 Oct; 9(39):33906-33912. PubMed ID: 28895729 [TBL] [Abstract][Full Text] [Related]
15. Design of a New Fused-Ring Electron Acceptor with Excellent Compatibility to Wide-Bandgap Polymer Donors for High-Performance Organic Photovoltaics. Liu W; Zhang J; Zhou Z; Zhang D; Zhang Y; Xu S; Zhu X Adv Mater; 2018 Jun; 30(26):e1800403. PubMed ID: 29766585 [TBL] [Abstract][Full Text] [Related]
16. Butterfly Effects Arising from Starting Materials in Fused-Ring Electron Acceptors. Li T; Wu Y; Zhou J; Li M; Wu J; Hu Q; Jia B; Pan X; Zhang M; Tang Z; Xie Z; Russell TP; Zhan X J Am Chem Soc; 2020 Nov; 142(47):20124-20133. PubMed ID: 33170682 [TBL] [Abstract][Full Text] [Related]
17. Building Blocks for High-Efficiency Organic Photovoltaics: Interplay of Molecular, Crystal, and Electronic Properties in Post-Fullerene ITIC Ensembles. Swick SM; Gebraad T; Jones L; Fu B; Aldrich TJ; Kohlstedt KL; Schatz GC; Facchetti A; Marks TJ Chemphyschem; 2019 Oct; 20(20):2608-2626. PubMed ID: 31529569 [TBL] [Abstract][Full Text] [Related]
18. Low-Cost Nonfused-Ring Electron Acceptors Enabled by Noncovalent Conformational Locks. Zhang X; Gu X; Huang H Acc Chem Res; 2024 Mar; 57(6):981-991. PubMed ID: 38431881 [TBL] [Abstract][Full Text] [Related]
19. Fluorination Effects on Indacenodithienothiophene Acceptor Packing and Electronic Structure, End-Group Redistribution, and Solar Cell Photovoltaic Response. Aldrich TJ; Matta M; Zhu W; Swick SM; Stern CL; Schatz GC; Facchetti A; Melkonyan FS; Marks TJ J Am Chem Soc; 2019 Feb; 141(7):3274-3287. PubMed ID: 30672702 [TBL] [Abstract][Full Text] [Related]
20. Understanding of the Nearly Linear Tunable Open-Circuit Voltages in Ternary Organic Solar Cells Based on Two Non-fullerene Acceptors. Jia Z; Chen Z; Chen X; Bai L; Zhu H; Yang YM J Phys Chem Lett; 2021 Jan; 12(1):151-156. PubMed ID: 33320004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]