These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29978882)

  • 1. Change in collective motion of colloidal particles driven by an optical vortex with driving force and spatial confinement.
    Saito K; Okubo S; Kimura Y
    Soft Matter; 2018 Jul; 14(29):6037-6042. PubMed ID: 29978882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic clustering of driven colloidal particles on a circular path.
    Okubo S; Shibata S; Kawamura YS; Ichikawa M; Kimura Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032303. PubMed ID: 26465469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driven optical matter: Dynamics of electrodynamically coupled nanoparticles in an optical ring vortex.
    Figliozzi P; Sule N; Yan Z; Bao Y; Burov S; Gray SK; Rice SA; Vaikuntanathan S; Scherer NF
    Phys Rev E; 2017 Feb; 95(2-1):022604. PubMed ID: 28298004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamically induced rhythmic motion of optically driven colloidal particles on a ring.
    Sassa Y; Shibata S; Iwashita Y; Kimura Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061402. PubMed ID: 23005091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective excitations of hydrodynamically coupled driven colloidal particles.
    Nagar H; Roichman Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042302. PubMed ID: 25375489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of hydrodynamic inter-particle interaction on the orbital motion of dielectric nanoparticles driven by an optical vortex.
    Tsuji T; Nakatsuka R; Nakajima K; Doi K; Kawano S
    Nanoscale; 2020 Mar; 12(12):6673-6690. PubMed ID: 32068212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations.
    Li M; Yan S; Yao B; Liang Y; Zhang P
    Opt Express; 2016 Sep; 24(18):20604-12. PubMed ID: 27607664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holographic optical tweezers for object manipulations at an air-liquid surface.
    Jesacher A; Fürhapter S; Maurer C; Bernet S; Ritsch-Marte M
    Opt Express; 2006 Jun; 14(13):6342-52. PubMed ID: 19516810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractional optical vortex beam induced rotation of particles.
    Tao S; Yuan XC; Lin J; Peng X; Niu H
    Opt Express; 2005 Oct; 13(20):7726-31. PubMed ID: 19498800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of microparticles trapped in a perfect vortex beam.
    Chen M; Mazilu M; Arita Y; Wright EM; Dholakia K
    Opt Lett; 2013 Nov; 38(22):4919-22. PubMed ID: 24322166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic synchronization and collective dynamics of colloidal particles driven along a circular path.
    Miyamoto T; Imai M; Uchida N
    Phys Rev E; 2019 Sep; 100(3-1):032607. PubMed ID: 31640016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic interactions hinder transport of flow-driven colloidal particles.
    Lips D; Cereceda-López E; Ortiz-Ambriz A; Tierno P; Ryabov A; Maass P
    Soft Matter; 2022 Dec; 18(47):8983-8994. PubMed ID: 36383199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles.
    Arzola AV; Jákl P; Chvátal L; Zemánek P
    Opt Express; 2014 Jun; 22(13):16207-21. PubMed ID: 24977872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical spanner for nanoparticle rotation with focused optical vortex generated through a Pancharatnam-Berry phase metalens.
    Shen Z; Xiang Z; Wang Z; Shen Y; Zhang B
    Appl Opt; 2021 Jun; 60(16):4820-4826. PubMed ID: 34143035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation forces on a Rayleigh particle by highly focused partially coherent and radially polarized vortex beams.
    Shu J; Chen Z; Pu J
    J Opt Soc Am A Opt Image Sci Vis; 2013 May; 30(5):916-22. PubMed ID: 23695323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-optically controlled holographic plasmonic vortex array for multiple metallic particles manipulation.
    Ju Z; Ma H; Zhang S; Xie X; Min C; Zhang Y; Yuan X
    Opt Lett; 2023 Dec; 48(24):6577-6580. PubMed ID: 38099803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear accelerated orbiting motions of optical trapped particles through two-photon absorption.
    Zhang X; Rui G; He J; Cui Y; Gu B
    Opt Lett; 2021 Jan; 46(1):110-113. PubMed ID: 33362028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic Interactions Can Induce Jamming in Flow-Driven Systems.
    Cereceda-López E; Lips D; Ortiz-Ambriz A; Ryabov A; Maass P; Tierno P
    Phys Rev Lett; 2021 Nov; 127(21):214501. PubMed ID: 34860099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical trapping of multiple particles based on a rotationally-symmetric power-exponent-phase vortex beam.
    Wu Z; Zhao J; Dou J; Liu J; Jing Q; Li B; Hu Y
    Opt Express; 2022 Nov; 30(24):42892-42901. PubMed ID: 36522999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.