BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29978897)

  • 1. Mechanisms and Regulation of Intestinal Phosphate Absorption.
    Hernando N; Wagner CA
    Compr Physiol; 2018 Jun; 8(3):1065-1090. PubMed ID: 29978897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1,25(OH)
    Hernando N; Pastor-Arroyo EM; Marks J; Schnitzbauer U; Knöpfel T; Bürki M; Bettoni C; Wagner CA
    J Physiol; 2021 Feb; 599(4):1131-1150. PubMed ID: 33200827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of an intestinal phosphate transporter alternative to type IIb sodium-dependent phosphate transporter in rats with chronic kidney disease.
    Ichida Y; Ohtomo S; Yamamoto T; Murao N; Tsuboi Y; Kawabe Y; Segawa H; Horiba N; Miyamoto KI; Floege J
    Nephrol Dial Transplant; 2021 Jan; 36(1):68-75. PubMed ID: 32879980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamin D and type II sodium-dependent phosphate cotransporters.
    Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K
    Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of SLC34A2 in intestinal phosphate absorption and phosphate homeostasis.
    Marks J
    Pflugers Arch; 2019 Jan; 471(1):165-173. PubMed ID: 30343332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate homeostasis and the renal-gastrointestinal axis.
    Marks J; Debnam ES; Unwin RJ
    Am J Physiol Renal Physiol; 2010 Aug; 299(2):F285-96. PubMed ID: 20534868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal epithelial ablation of Pit-2/Slc20a2 in mice leads to sustained elevation of vitamin D
    Pastor-Arroyo EM; Knöpfel T; Imenez Silva PH; Schnitzbauer U; Poncet N; Biber J; Wagner CA; Hernando N
    Acta Physiol (Oxf); 2020 Oct; 230(2):e13526. PubMed ID: 32564464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of variations in dietary Pi intake on intestinal Pi transporters (NaPi-IIb, PiT-1, and PiT-2) and phosphate-regulating factors (PTH, FGF-23, and MEPE).
    Aniteli TM; de Siqueira FR; Dos Reis LM; Dominguez WV; de Oliveira EMC; Castelucci P; Moysés RMA; Jorgetti V
    Pflugers Arch; 2018 Apr; 470(4):623-632. PubMed ID: 29372301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intestinal phosphate transporter NaPi-IIb (Slc34a2) is required to protect bone during dietary phosphate restriction.
    Knöpfel T; Pastor-Arroyo EM; Schnitzbauer U; Kratschmar DV; Odermatt A; Pellegrini G; Hernando N; Wagner CA
    Sci Rep; 2017 Sep; 7(1):11018. PubMed ID: 28887454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Sodium-Dependent Phosphate Transporter in Phosphate Homeostasis.
    Segawa H; Shiozaki Y; Kaneko I; Miyamoto K
    J Nutr Sci Vitaminol (Tokyo); 2015; 61 Suppl():S119-21. PubMed ID: 26598821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus absorption and gene expression levels of related transporters in the small intestine of broilers.
    Hu Y; Liao X; Wen Q; Lu L; Zhang L; Luo X
    Br J Nutr; 2018 Jun; 119(12):1346-1354. PubMed ID: 29845902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the gastrointestinal tract in phosphate homeostasis in health and chronic kidney disease.
    Marks J; Debnam ES; Unwin RJ
    Curr Opin Nephrol Hypertens; 2013 Jul; 22(4):481-7. PubMed ID: 23666413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1alpha(OH)D3 One-alpha-hydroxy-cholecalciferol--an active vitamin D analog. Clinical studies on prophylaxis and treatment of secondary hyperparathyroidism in uremic patients on chronic dialysis.
    Brandi L
    Dan Med Bull; 2008 Nov; 55(4):186-210. PubMed ID: 19232159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intestinal Depletion of NaPi-IIb/Slc34a2 in Mice: Renal and Hormonal Adaptation.
    Hernando N; Myakala K; Simona F; Knöpfel T; Thomas L; Murer H; Wagner CA; Biber J
    J Bone Miner Res; 2015 Oct; 30(10):1925-37. PubMed ID: 25827490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intestinal phosphate transport: a therapeutic target in chronic kidney disease and beyond?
    Lee GJ; Marks J
    Pediatr Nephrol; 2015 Mar; 30(3):363-71. PubMed ID: 24496589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the type IIb Na(+)-P(i) cotransporter in mouse small intestine.
    Radanovic T; Wagner CA; Murer H; Biber J
    Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G496-500. PubMed ID: 15701623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the isoforms of type IIb sodium-dependent phosphate cotransporter (Slc34a2) in yellow catfish, Pelteobagrus fulvidraco, and their vitamin D
    Chen P; Huang Y; Bayir A; Wang C
    Fish Physiol Biochem; 2017 Feb; 43(1):229-244. PubMed ID: 27620186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Intestinal and renal transport mechanisms of phosphate].
    Senatore M; Mollica A; Papalia T; Bonofiglio R
    G Ital Nefrol; 2012; 29(2):174-82. PubMed ID: 22538947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice.
    Myakala K; Motta S; Murer H; Wagner CA; Koesters R; Biber J; Hernando N
    Am J Physiol Renal Physiol; 2014 Apr; 306(8):F833-43. PubMed ID: 24553430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinamide prevents the development of hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure.
    Eto N; Miyata Y; Ohno H; Yamashita T
    Nephrol Dial Transplant; 2005 Jul; 20(7):1378-84. PubMed ID: 15870221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.