BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 29978942)

  • 21. Remarkable performance of atomically dispersed cobalt catalyst for catalytic removal of indoor formaldehyde.
    Tang H; Zhang J; Huang M; Zhang J; Zhou Y; Wang G; Wang R; Chen J
    J Colloid Interface Sci; 2022 Oct; 624():527-536. PubMed ID: 35679640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.
    Ryabchuk P; Agostini G; Pohl MM; Lund H; Agapova A; Junge H; Junge K; Beller M
    Sci Adv; 2018 Jun; 4(6):eaat0761. PubMed ID: 29888329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolated Iron Single-Atomic Site-Catalyzed Chemoselective Transfer Hydrogenation of Nitroarenes to Arylamines.
    Cheong WC; Yang W; Zhang J; Li Y; Zhao D; Liu S; Wu K; Liu Q; Zhang C; Wang D; Peng Q; Chen C; Li Y
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33819-33824. PubMed ID: 31436954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions.
    Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z
    J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational Design of Main Group Metal-Embedded Nitrogen-Doped Carbon Materials as Frustrated Lewis Pair Catalysts for CO
    Zhang Y; Mo Y; Cao Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1002-1014. PubMed ID: 34935336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.
    Bernskoetter WH; Hazari N
    Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biowaste soybean curd residue-derived Pd/nitrogen-doped porous carbon with excellent catalytic performance for phenol hydrogenation.
    Zhu Y; Yu G; Yang J; Yuan M; Xu D; Dong Z
    J Colloid Interface Sci; 2019 Jan; 533():259-267. PubMed ID: 30170277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Dispersed Metal Carbide on ZIF-Derived Pyridinic-N-Doped Carbon for CO
    Li Y; Cai X; Chen S; Zhang H; Zhang KHL; Hong J; Chen B; Kuo DH; Wang W
    ChemSusChem; 2018 Mar; 11(6):1040-1047. PubMed ID: 29424046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile synthesis of ultrafine cobalt oxides embedded into N-doped carbon with superior activity in hydrogenation of 4-nitrophenol.
    Zhang X; Wang N; Geng L; Fu J; Hu H; Zhang D; Zhu B; Carozza J; Han H
    J Colloid Interface Sci; 2018 Feb; 512():844-852. PubMed ID: 29126073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrogen and Phosphorus Dual-Coordinated Single-Atom Mn: MnN
    Su T; Cai C
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55568-55576. PubMed ID: 36509748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single Pt atom stabilized on nitrogen doped graphene: CO oxidation readily occurs via the tri-molecular Eley-Rideal mechanism.
    Zhang X; Lu Z; Xu G; Wang T; Ma D; Yang Z; Yang L
    Phys Chem Chem Phys; 2015 Aug; 17(30):20006-13. PubMed ID: 26172523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-Atom Molybdenum-N
    Jiang Y; Sung Y; Choi C; Joo Bang G; Hong S; Tan X; Wu TS; Soo YL; Xiong P; Meng-Jung Li M; Hao L; Jung Y; Sun Z
    Angew Chem Int Ed Engl; 2022 Sep; 61(37):e202203836. PubMed ID: 35852815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unraveling the Catalytic Performance of the Nonprecious Metal Single-Atom-Embedded Graphitic
    Zhang Y; Cao X; Cao Z
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35844-35853. PubMed ID: 35904900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.
    Wang L; Zhang B; Meng X; Su DS; Xiao FS
    ChemSusChem; 2014 Jun; 7(6):1537-41. PubMed ID: 24861954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic evaluations of the acceptorless dehydrogenation and hydrogenation of pre-aromatic and aromatic N-heterocycles in acetonitrile.
    Qian BC; Wang X; Wang Q; Zhu XQ; Shen GB
    RSC Adv; 2024 Jan; 14(1):222-232. PubMed ID: 38173608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transfer hydrogenation of phenol over Co-CoO
    Nie Y; Lin W; Zhang Y; Chen Y; Nie R
    Dalton Trans; 2022 Oct; 51(41):15983-15989. PubMed ID: 36200341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-Ag alloy protected by nitrogen doped carbon as highly efficient and chemoselective catalysts for the hydrogenation of halogenated nitrobenzenes.
    Zhang W; Wu W; Long Y; Wang F; Ma J
    J Colloid Interface Sci; 2018 Jul; 522():217-227. PubMed ID: 29601963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterogeneous nickel-catalysed reversible, acceptorless dehydrogenation of N-heterocycles for hydrogen storage.
    Ryabchuk P; Agapova A; Kreyenschulte C; Lund H; Junge H; Junge K; Beller M
    Chem Commun (Camb); 2019 Apr; 55(34):4969-4972. PubMed ID: 30968097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing CO
    Ma D; Wei X; Li J; Cao Z
    Inorg Chem; 2024 Jan; 63(1):915-922. PubMed ID: 38152032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.