These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 29978942)

  • 41. Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations.
    Long X; Li Z; Gao G; Sun P; Wang J; Zhang B; Zhong J; Jiang Z; Li F
    Nat Commun; 2020 Aug; 11(1):4074. PubMed ID: 32792657
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Iron-based nanocatalyst for the acceptorless dehydrogenation reactions.
    Jaiswal G; Landge VG; Jagadeesan D; Balaraman E
    Nat Commun; 2017 Dec; 8(1):2147. PubMed ID: 29247179
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Active Site Structures in Nitrogen-Doped Carbon-Supported Cobalt Catalysts for the Oxygen Reduction Reaction.
    Qian Y; Liu Z; Zhang H; Wu P; Cai C
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32875-32886. PubMed ID: 27934155
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CoPd Nanoalloys with Metal-Organic Framework as Template for Both N-Doped Carbon and Cobalt Precursor: Efficient and Robust Catalysts for Hydrogenation Reactions.
    Zhu J; Xu D; Ding LJ; Wang PC
    Chemistry; 2021 Feb; 27(8):2707-2716. PubMed ID: 33084099
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation.
    Lin L; Yao S; Gao R; Liang X; Yu Q; Deng Y; Liu J; Peng M; Jiang Z; Li S; Li YW; Wen XD; Zhou W; Ma D
    Nat Nanotechnol; 2019 Apr; 14(4):354-361. PubMed ID: 30804479
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Stable Nanocobalt Catalyst with Highly Dispersed CoN
    Tang C; Surkus AE; Chen F; Pohl MM; Agostini G; Schneider M; Junge H; Beller M
    Angew Chem Int Ed Engl; 2017 Dec; 56(52):16616-16620. PubMed ID: 29115056
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A General Strategy to Atomically Dispersed Precious Metal Catalysts for Unravelling Their Catalytic Trends for Oxygen Reduction Reaction.
    Kim JH; Shin D; Lee J; Baek DS; Shin TJ; Kim YT; Jeong HY; Kwak JH; Kim H; Joo SH
    ACS Nano; 2020 Feb; 14(2):1990-2001. PubMed ID: 31999424
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Atomically Dispersed Co Clusters Anchored on N-doped Carbon Nanotubes for Efficient Dehydrogenation of Alcohols and Subsequent Conversion to Carboxylic Acids.
    Li B; Fang J; Xu D; Zhao H; Zhu H; Zhang F; Dong Z
    ChemSusChem; 2021 Oct; 14(20):4536-4545. PubMed ID: 34370902
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanisms for dehydrogenation and hydrogenation of N-heterocycles using PNP-pincer-supported iron catalysts: a density functional study.
    Sawatlon B; Surawatanawong P
    Dalton Trans; 2016 Oct; 45(38):14965-78. PubMed ID: 27550424
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atomically Dispersed Vanadium Sites Anchored on N-Doped Porous Carbon for the Efficient Oxidative Coupling of Amines to Imines.
    Xu Q; Feng B; Ye C; Fu Y; Chen DL; Zhang F; Zhang J; Zhu W
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15168-15177. PubMed ID: 33760597
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Homogeneous catalytic system for reversible dehydrogenation-hydrogenation reactions of nitrogen heterocycles with reversible interconversion of catalytic species.
    Yamaguchi R; Ikeda C; Takahashi Y; Fujita K
    J Am Chem Soc; 2009 Jun; 131(24):8410-2. PubMed ID: 19480425
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isoelectronic Manganese and Iron Hydrogenation/Dehydrogenation Catalysts: Similarities and Divergences.
    Gorgas N; Kirchner K
    Acc Chem Res; 2018 Jun; 51(6):1558-1569. PubMed ID: 29863334
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photocatalytic acceptorless alkane dehydrogenation: scope, mechanism, and conquering deactivation with carbon dioxide.
    Chowdhury AD; Julis J; Grabow K; Hannebauer B; Bentrup U; Adam M; Franke R; Jackstell R; Beller M
    ChemSusChem; 2015 Jan; 8(2):323-30. PubMed ID: 25346450
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation of Biomass by Superhydrophilic Nitrogen/Oxygen Co-Doped Porous Carbon Nanosphere Supported Pd Nanoparticles.
    Yu H; Xu Y; Havener K; Zhang M; Zhang L; Wu W; Huang K
    Small; 2022 Apr; 18(16):e2106893. PubMed ID: 35254000
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nitrogen-doped carbon nanotube as a potential metal-free catalyst for CO oxidation.
    Lin IH; Lu YH; Chen HT
    Phys Chem Chem Phys; 2016 Apr; 18(17):12093-100. PubMed ID: 27074831
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly Active and Stable Palladium Single-Atom Catalyst Achieved by a Thermal Atomization Strategy on an SBA-15 Molecular Sieve for Semi-Hydrogenation Reactions.
    Li Z; Ren Q; Wang X; Chen W; Leng L; Zhang M; Horton JH; Liu B; Xu Q; Wu W; Wang J
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2530-2537. PubMed ID: 33412851
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrogenation and dehydrogenation of N-heterocycles under Cp*Co(III)-catalysis.
    Dahiya P; Garg N; Poli R; Sundararaju B
    Dalton Trans; 2023 Oct; 52(41):14752-14756. PubMed ID: 37814805
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Atomically Dispersed Indium Sites for Selective CO
    Lu P; Tan X; Zhao H; Xiang Q; Liu K; Zhao X; Yin X; Li X; Hai X; Xi S; Wee ATS; Pennycook SJ; Yu X; Yuan M; Wu J; Zhang G; Smith SC; Yin Z
    ACS Nano; 2021 Mar; 15(3):5671-5678. PubMed ID: 33586956
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cobalt Single-Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid.
    Li X; Surkus AE; Rabeah J; Anwar M; Dastigir S; Junge H; Brückner A; Beller M
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):15849-15854. PubMed ID: 32458555
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Heterogeneous Single Atom Cobalt Catalyst for Highly Efficient Acceptorless Dehydrogenative Coupling Reactions.
    Li Z; Lu X; Zhao R; Ji S; Zhang M; Horton JH; Wang Y; Xu Q; Zhu J
    Small; 2023 May; 19(18):e2207941. PubMed ID: 36759950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.