BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29979033)

  • 1. A Library Approach to Cationic Amphiphilic Polyproline Helices that Target Intracellular Pathogenic Bacteria.
    Nepal M; Mohamed MF; Blade R; Eldesouky HE; N Anderson T; Seleem MN; Chmielewski J
    ACS Infect Dis; 2018 Sep; 4(9):1300-1305. PubMed ID: 29979033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting intracellular bacteria with an extended cationic amphiphilic polyproline helix.
    Nepal M; Thangamani S; Seleem MN; Chmielewski J
    Org Biomol Chem; 2015 Jun; 13(21):5930-6. PubMed ID: 25925008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Intracellular Pathogenic Bacteria Through N-Terminal Modification of Cationic Amphiphilic Polyproline Helices.
    Dietsche TA; Eldesouky HE; Zeiders SM; Seleem MN; Chmielewski J
    J Org Chem; 2020 Jun; 85(11):7468-7475. PubMed ID: 32425046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting intracellular pathogenic bacteria with unnatural proline-rich peptides: coupling antibacterial activity with macrophage penetration.
    Kuriakose J; Hernandez-Gordillo V; Nepal M; Brezden A; Pozzi V; Seleem MN; Chmielewski J
    Angew Chem Int Ed Engl; 2013 Sep; 52(37):9664-7. PubMed ID: 23960012
    [No Abstract]   [Full Text] [Related]  

  • 5. Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria.
    Li W; Tailhades J; O'Brien-Simpson NM; Separovic F; Otvos L; Hossain MA; Wade JD
    Amino Acids; 2014 Oct; 46(10):2287-94. PubMed ID: 25141976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel polycationic analogue of gratisin with antibiotic activity against both Gram-positive and Gram-negative bacteria.
    Tamaki M; Kokuno M; Suzuki Y; Iwama M; Shindo M; Uchida Y
    J Antibiot (Tokyo); 2008 Jan; 61(1):33-5. PubMed ID: 18305357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced membrane disruption and antibiotic action against pathogenic bacteria by designed histidine-rich peptides at acidic pH.
    Mason AJ; Gasnier C; Kichler A; Prévost G; Aunis D; Metz-Boutigue MH; Bechinger B
    Antimicrob Agents Chemother; 2006 Oct; 50(10):3305-11. PubMed ID: 17005809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Class of Cationic and Non-Peptidic Small Molecules as Hits for the Development of Antimicrobial Agents.
    Jiménez A; García P; de la Puente S; Madrona A; Camarasa MJ; Pérez-Pérez MJ; Quintela JC; García-Del Portillo F; San-Félix A
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29932141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial activity of doubly-stapled alanine/lysine-based peptides.
    Dinh TT; Kim DH; Luong HX; Lee BJ; Kim YW
    Bioorg Med Chem Lett; 2015 Sep; 25(18):4016-9. PubMed ID: 26235946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Update of peptides with antibacterial activity.
    Vila-Farrés X; Giralt E; Vila J
    Curr Med Chem; 2012; 19(36):6188-98. PubMed ID: 22978329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria.
    Ebbensgaard A; Mordhorst H; Overgaard MT; Nielsen CG; Aarestrup FM; Hansen EB
    PLoS One; 2015; 10(12):e0144611. PubMed ID: 26656394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial peptide PMAP-37 analogs: Increasing the positive charge to enhance the antibacterial activity of PMAP-37.
    Zhou J; Chen L; Liu Y; Shen T; Zhang C; Liu Z; Feng X; Wang C
    J Pept Sci; 2019 Dec; 25(12):e3220. PubMed ID: 31858653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential application of antimicrobial peptides in the treatment of bacterial biofilm infections.
    Strempel N; Strehmel J; Overhage J
    Curr Pharm Des; 2015; 21(1):67-84. PubMed ID: 25189860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocidal activity of chicken defensin-9 against microbial pathogens.
    Yacoub HA; El-Hamidy SM; Mahmoud MM; Baeshen MN; Almehdar HA; Uversky VN; Redwan EM; Al-Maghrabi OA; Elazzazy AM
    Biochem Cell Biol; 2016 Apr; 94(2):176-87. PubMed ID: 26914652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Activity of Small Urea-γ-AApeptides Toward Gram-Positive Bacteria.
    Su M; Shi Y; Wang M; Gao R; Wu J; Xu H; Xi C; Cai J
    ChemMedChem; 2019 Dec; 14(23):1963-1967. PubMed ID: 31677239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial peptides: promising alternatives to conventional antibiotics.
    Baltzer SA; Brown MH
    J Mol Microbiol Biotechnol; 2011; 20(4):228-35. PubMed ID: 21894027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of antimicrobial γ-AApeptides.
    She F; Oyesiku O; Zhou P; Zhuang S; Koenig DW; Cai J
    Future Med Chem; 2016 Jun; 8(10):1101-10. PubMed ID: 27284624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Aib residues insertion on the structural-functional properties of the frog skin-derived peptide esculentin-1a(1-21)NH
    Biondi B; Casciaro B; Di Grazia A; Cappiello F; Luca V; Crisma M; Mangoni ML
    Amino Acids; 2017 Jan; 49(1):139-150. PubMed ID: 27726008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens.
    Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS
    J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent development of membrane-active molecules as antibacterial agents.
    Zhang N; Ma S
    Eur J Med Chem; 2019 Dec; 184():111743. PubMed ID: 31586478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.