These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29979033)

  • 21. Controlling bacterial infections by inhibiting proton-dependent processes.
    Kaneti G; Meir O; Mor A
    Biochim Biophys Acta; 2016 May; 1858(5):995-1003. PubMed ID: 26522076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simple oligomers as antimicrobial peptide mimics.
    Rennie J; Arnt L; Tang H; Nüsslein K; Tew GN
    J Ind Microbiol Biotechnol; 2005 Jul; 32(7):296-300. PubMed ID: 15959729
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes.
    Schmitt P; Rosa RD; Destoumieux-Garzón D
    Biochim Biophys Acta; 2016 May; 1858(5):958-70. PubMed ID: 26498397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of Cationic Side Chains in the Antimicrobial Activity of C18G.
    Kohn EM; Shirley DJ; Arotsky L; Picciano AM; Ridgway Z; Urban MW; Carone BR; Caputo GA
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29401708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved antibacterial activity of a marine peptide-N2 against intracellular Salmonella typhimurium by conjugating with cell-penetrating peptides-bLFcin
    Li Z; Wang X; Teng D; Mao R; Hao Y; Yang N; Chen H; Wang X; Wang J
    Eur J Med Chem; 2018 Feb; 145():263-272. PubMed ID: 29329001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological and structural effects of the conjugation of an antimicrobial decapeptide with saturated, unsaturated, methoxylated and branched fatty acids.
    Húmpola MV; Rey MC; Carballeira NM; Simonetta AC; Tonarelli GG
    J Pept Sci; 2017 Jan; 23(1):45-55. PubMed ID: 28025839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a Novel Cathelicidin from the
    Zhong L; Liu J; Teng S; Xie Z
    Toxins (Basel); 2020 Dec; 12(12):. PubMed ID: 33291852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Levofloxacin and indolicidin for combination antimicrobial therapy.
    Ghaffar KA; Hussein WM; Khalil ZG; Capon RJ; Skwarczynski M; Toth I
    Curr Drug Deliv; 2015; 12(1):108-14. PubMed ID: 25213074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipidated α/α-AA heterogeneous peptides as antimicrobial agents.
    Singh S; Nimmagadda A; Su M; Wang M; Teng P; Cai J
    Eur J Med Chem; 2018 Jul; 155():398-405. PubMed ID: 29906686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator.
    Corzo G; Escoubas P; Villegas E; Barnham KJ; He W; Norton RS; Nakajima T
    Biochem J; 2001 Oct; 359(Pt 1):35-45. PubMed ID: 11563967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity.
    Rabanal F; Grau-Campistany A; Vila-Farrés X; Gonzalez-Linares J; Borràs M; Vila J; Manresa A; Cajal Y
    Sci Rep; 2015 May; 5():10558. PubMed ID: 26024044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction between heat shock proteins and antimicrobial peptides.
    Otvos L; O I; Rogers ME; Consolvo PJ; Condie BA; Lovas S; Bulet P; Blaszczyk-Thurin M
    Biochemistry; 2000 Nov; 39(46):14150-9. PubMed ID: 11087363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three new antimicrobial peptides from the scorpion Pandinus imperator.
    Zeng XC; Zhou L; Shi W; Luo X; Zhang L; Nie Y; Wang J; Wu S; Cao B; Cao H
    Peptides; 2013 Jul; 45():28-34. PubMed ID: 23624072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic antimicrobial peptidomimetics with therapeutic potential.
    Haug BE; Stensen W; Kalaaji M; Rekdal Ø; Svendsen JS
    J Med Chem; 2008 Jul; 51(14):4306-14. PubMed ID: 18570363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular mechanisms of membrane targeting antibiotics.
    Epand RM; Walker C; Epand RF; Magarvey NA
    Biochim Biophys Acta; 2016 May; 1858(5):980-7. PubMed ID: 26514603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design, Synthesis, and Evaluation of Amphiphilic Cyclic and Linear Peptides Composed of Hydrophobic and Positively-Charged Amino Acids as Antibacterial Agents.
    Riahifard N; Mozaffari S; Aldakhil T; Nunez F; Alshammari Q; Alshammari S; Yamaki J; Parang K; Tiwari RK
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30360400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Augmentation of the antibacterial activities of Pt5-derived antimicrobial peptides (AMPs) by amino acid substitutions: Design of novel AMPs against MDR bacteria.
    Wang Y; Cui P; Zhang Y; Yang Q; Zhang S
    Fish Shellfish Immunol; 2018 Jun; 77():100-111. PubMed ID: 29567140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimicrobial AApeptides.
    Sang P; Shi Y; Teng P; Cao A; Xu H; Li Q; Cai J
    Curr Top Med Chem; 2017; 17(11):1266-1279. PubMed ID: 27758686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties.
    Han HM; Gopal R; Park Y
    Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction, mechanism, and antibacterial resistance insight into polypeptide-based nanoparticles.
    Zhen JB; Zhao MH; Ge Y; Liu Y; Xu LW; Chen C; Gong YK; Yang KW
    Biomater Sci; 2019 Oct; 7(10):4142-4152. PubMed ID: 31364616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.