BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29979036)

  • 41. Simultaneous on-line size and chemical analysis of gas phase and particulate phase of cigarette mainstream smoke.
    Adam T; McAughey J; McGrath C; Mocker C; Zimmermann R
    Anal Bioanal Chem; 2009 Jun; 394(4):1193-203. PubMed ID: 19381615
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of biomarkers of exposure to selected cigarette smoke constituents in adult smokers switched to carbon-filtered cigarettes in short-term and long-term clinical studies.
    Sarkar M; Kapur S; Frost-Pineda K; Feng S; Wang J; Liang Q; Roethig H
    Nicotine Tob Res; 2008 Dec; 10(12):1761-72. PubMed ID: 19023827
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Scope for regulation of cigarette smoke toxicity according to brand differences in published toxicant emissions.
    Laugesen M; Fowles J
    N Z Med J; 2005 Apr; 118(1213):U1401. PubMed ID: 15843830
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Percent free base nicotine in the tobacco smoke particulate matter of selected commercial and reference cigarettes.
    Pankow JF; Tavakoli AD; Luo W; Isabelle LM
    Chem Res Toxicol; 2003 Aug; 16(8):1014-8. PubMed ID: 12924929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of tobacco nitrate content on free radical levels in mainstream smoke.
    Mocniak LE; Bitzer ZT; Trushin N; Richie JP
    Free Radic Biol Med; 2022 Sep; 190():116-123. PubMed ID: 35961467
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physical design analysis and mainstream smoke constituent yields of the new potential reduced exposure product, Marlboro UltraSmooth.
    Rees VW; Wayne GF; Thomas BF; Connolly GN
    Nicotine Tob Res; 2007 Nov; 9(11):1197-206. PubMed ID: 17978995
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lack of correlation between cigarette mainstream smoke particulate phase radicals and hydroquinone yield.
    Blakley RL; Henry DD; Smith CJ
    Food Chem Toxicol; 2001 Apr; 39(4):401-6. PubMed ID: 11295487
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative study of the main characteristics and composition of the mainstream smoke of ten cigarette brands sold in Spain.
    Marcilla A; Martínez I; Berenguer D; Gómez-Siurana A; Beltrán MI
    Food Chem Toxicol; 2012 May; 50(5):1317-33. PubMed ID: 22342527
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Solid-phase microextraction-based approach to determine free-base nicotine in trapped mainstream cigarette smoke total particulate matter.
    Watson CH; Trommel JS; Ashley DL
    J Agric Food Chem; 2004 Dec; 52(24):7240-5. PubMed ID: 15563201
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA solution(R) in cigarette filters reduces polycyclic aromatic hydrocarbon (PAH) levels in mainstream tobacco smoke.
    Lodovici M; Akpan V; Caldini S; Akanju B; Dolara P
    Food Chem Toxicol; 2007 Sep; 45(9):1752-6. PubMed ID: 17459554
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determination of seven nitrobenzene compounds in mainstream cigarette smoke with heart-cutting two-dimensional gas chromatography.
    Xie F; Shang J; Guo J; Ge Z; Zhang S
    J Chromatogr Sci; 2012 May; 50(5):387-92. PubMed ID: 22402449
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new look at radicals in cigarette smoke.
    Bartalis J; Chan WG; Wooten JB
    Anal Chem; 2007 Jul; 79(13):5103-6. PubMed ID: 17530742
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A comparison of the free radical chemistry of tobacco-burning cigarettes and cigarettes that only heat tobacco.
    Pryor WA; Church DF; Evans MD; Rice WY; Hayes JR
    Free Radic Biol Med; 1990; 8(3):275-9. PubMed ID: 2341059
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The generation of formaldehyde in cigarettes--Overview and recent experiments.
    Baker RR
    Food Chem Toxicol; 2006 Nov; 44(11):1799-822. PubMed ID: 16859820
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comprehensive evaluation of the toxicology resulting from laser-generated ventilation holes in cigarette filters.
    Coggins CR; Merski JA; Oldham MJ
    Inhal Toxicol; 2013; 25 Suppl 2():59-63. PubMed ID: 24341847
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous determination of four tobacco-specific N-nitrosamines in mainstream smoke for Chinese Virginia cigarettes by liquid chromatography-tandem mass spectrometry and validation under ISO and "Canadian intense" machine smoking regimes.
    Xiong W; Hou H; Jiang X; Tang G; Hu Q
    Anal Chim Acta; 2010 Jul; 674(1):71-8. PubMed ID: 20638502
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Free Radical Production and Characterization of Heat-Not-Burn Cigarettes in Comparison to Conventional and Electronic Cigarettes.
    Bitzer ZT; Goel R; Trushin N; Muscat J; Richie JP
    Chem Res Toxicol; 2020 Jul; 33(7):1882-1887. PubMed ID: 32432464
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mutagenicity of smoke condensates from Canadian cigarettes with different design features.
    Mladjenovic N; Maertens RM; White PA; Soo EC
    Mutagenesis; 2014 Jan; 29(1):7-15. PubMed ID: 24321849
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determination of 14 polycyclic aromatic hydrocarbons in mainstream smoke from domestic cigarettes.
    Ding YS; Trommel JS; Yan XJ; Ashley D; Watson CH
    Environ Sci Technol; 2005 Jan; 39(2):471-8. PubMed ID: 15707046
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrogen Cyanide and Aromatic Amine Yields in the Mainstream Smoke of 60 Little Cigars.
    Ai J; Hassink M; Taylor KM; Deycard VN; Hearn B; Williams K; McGuigan M; Valentin-Blasini L; Watson CH
    Chem Res Toxicol; 2022 Jun; 35(6):940-953. PubMed ID: 35612471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.