BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 29979064)

  • 21. Ultrasensitive Frequency Shifting of Dielectric Mie Resonance near Metallic Substrate.
    Liu C; Wang C; Chen J; Su Y; Qiao L; Zhou J; Bai Y
    Research (Wash D C); 2022; 2022():9862974. PubMed ID: 35620234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoluminescence from FRET pairs coupled with Mie-resonant silicon nanospheres.
    Ozawa K; Adachi M; Sugimoto H; Fujii M
    Nanoscale; 2024 Feb; 16(8):4039-4046. PubMed ID: 38344928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observation of optical resonances of dielectric spheres by light scattering.
    Ashkin A; Dziedzic JM
    Appl Opt; 1981 May; 20(10):1803-14. PubMed ID: 20332838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strong magnetic response of submicron silicon particles in the infrared.
    García-Etxarri A; Gómez-Medina R; Froufe-Pérez LS; López C; Chantada L; Scheffold F; Aizpurua J; Nieto-Vesperinas M; Sáenz JJ
    Opt Express; 2011 Mar; 19(6):4815-26. PubMed ID: 21445117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensing with magnetic dipolar resonances in semiconductor nanospheres.
    García-Cámara B; Gómez-Medina R; Sáenz JJ; Sepúlveda B
    Opt Express; 2013 Oct; 21(20):23007-20. PubMed ID: 24104216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Manipulation of Magnetic Dipole Emission from Eu
    Vaskin A; Mashhadi S; Steinert M; Chong KE; Keene D; Nanz S; Abass A; Rusak E; Choi DY; Fernandez-Corbaton I; Pertsch T; Rockstuhl C; Noginov MA; Kivshar YS; Neshev DN; Noginova N; Staude I
    Nano Lett; 2019 Feb; 19(2):1015-1022. PubMed ID: 30605616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silicon nanoparticles as Raman scattering enhancers.
    Rodriguez I; Shi L; Lu X; Korgel BA; Alvarez-Puebla RA; Meseguer F
    Nanoscale; 2014 Jun; 6(11):5666-70. PubMed ID: 24764023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced Raman Scattering by ZnO Superstructures: Synergistic Effect of Charge Transfer and Mie Resonances.
    Ji W; Li L; Song W; Wang X; Zhao B; Ozaki Y
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14452-14456. PubMed ID: 31332913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evanescent-wave scattering in near-field optical microscopy.
    Wannemacher R; Quinten M; Pack A
    J Microsc; 1999; 194(Pt 2-3):260-4. PubMed ID: 11388249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays.
    Bezares FJ; Long JP; Glembocki OJ; Guo J; Rendell RW; Kasica R; Shirey L; Owrutsky JC; Caldwell JD
    Opt Express; 2013 Nov; 21(23):27587-601. PubMed ID: 24514277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution.
    Terekhov PD; Baryshnikova KV; Shalin AS; Karabchevsky A; Evlyukhin AB
    Opt Lett; 2017 Feb; 42(4):835-838. PubMed ID: 28198877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmonic enhancement of second harmonic generation on metal coated nanoparticles.
    Wunderlich S; Peschel U
    Opt Express; 2013 Aug; 21(16):18611-23. PubMed ID: 23938778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dielectric Mie voids: confining light in air.
    Hentschel M; Koshelev K; Sterl F; Both S; Karst J; Shamsafar L; Weiss T; Kivshar Y; Giessen H
    Light Sci Appl; 2023 Jan; 12(1):3. PubMed ID: 36587036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Q Supercavity Modes in Subwavelength Dielectric Resonators.
    Rybin MV; Koshelev KL; Sadrieva ZF; Samusev KB; Bogdanov AA; Limonov MF; Kivshar YS
    Phys Rev Lett; 2017 Dec; 119(24):243901. PubMed ID: 29286713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable Mie resonance in complex-shaped gadolinium niobate.
    Sedova A; Bermudez D; Tellez-Cruz MM; Falcony C
    Nanotechnology; 2023 Oct; 35(2):. PubMed ID: 37820635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nearly Perfect Transmissive Subtractive Coloration through the Spectral Amplification of Mie Scattering and Lattice Resonance.
    Lee T; Kim J; Koirala I; Yang Y; Badloe T; Jang J; Rho J
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26299-26307. PubMed ID: 34048213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Single-Step Bottom-up Approach for Synthesis of Highly Uniform Mie-Resonant Crystalline Semiconductor Particles at Visible Wavelengths.
    Eslamisaray MA; Wray PR; Lee Y; Nelson GM; Ilic O; Atwater HA; Kortshagen UR
    Nano Lett; 2023 Mar; 23(5):1930-1937. PubMed ID: 36815711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Observation of Fano resonances in all-dielectric nanoparticle oligomers.
    Chong KE; Hopkins B; Staude I; Miroshnichenko AE; Dominguez J; Decker M; Neshev DN; Brener I; Kivshar YS
    Small; 2014 May; 10(10):1985-90. PubMed ID: 24616191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large-Scale and Low-Cost Fabrication of Silicon Mie Resonators.
    Chaâbani W; Proust J; Movsesyan A; Béal J; Baudrion AL; Adam PM; Chehaidar A; Plain J
    ACS Nano; 2019 Apr; 13(4):4199-4208. PubMed ID: 30883108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Switching from visibility to invisibility via Fano resonances: theory and experiment.
    Rybin MV; Filonov DS; Belov PA; Kivshar YS; Limonov MF
    Sci Rep; 2015 Mar; 5():8774. PubMed ID: 25739324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.