These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29979179)

  • 1. A compact and flexible induction furnace for in situ X-ray microradiograhy and computed microtomography at Elettra: design, characterization and first tests.
    Kudrna Prašek M; Pistone M; Baker DR; Sodini N; Marinoni N; Lanzafame G; Mancini L
    J Synchrotron Radiat; 2018 Jul; 25(Pt 4):1172-1181. PubMed ID: 29979179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-isothermal furnace for in situ and real time X-ray radiography solidification experiments.
    Becker M; Dreißigacker C; Klein S; Kargl F
    Rev Sci Instrum; 2015 Jun; 86(6):063904. PubMed ID: 26133847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multipurpose furnace for in situ studies of polycrystalline materials using synchrotron radiation.
    Sharma H; Wattjes AC; Amirthalingam M; Zuidwijk T; Geerlofs N; Offerman SE
    Rev Sci Instrum; 2009 Dec; 80(12):123301. PubMed ID: 20059134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A compact furnace for in situ X-ray absorption spectroscopy: design, fabrication and study of cationic oxidation states in Pr
    Sattayaporn S; Rodporn S; Kidkhunthod P; Chanlek N; Yonchai C; Rujirawat S
    J Synchrotron Radiat; 2021 Mar; 28(Pt 2):455-460. PubMed ID: 33650557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 1800 K furnace designed for in situ synchrotron microtomography.
    Grupp R; Henkel F; Nöthe M; Banhart J; Kieback B; Haibel A
    J Synchrotron Radiat; 2009 Jul; 16(Pt 4):524-7. PubMed ID: 19535867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation furnace for synchrotron dark-field x-ray microscopy experiments.
    Yildirim C; Vitoux H; Dresselhaus-Marais LE; Steinmann R; Watier Y; Cook PK; Kutsal M; Detlefs C
    Rev Sci Instrum; 2020 Jun; 91(6):065109. PubMed ID: 32611059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-temperature furnace for in situ synchrotron X-ray spectroscopy under controlled atmospheric conditions.
    Eeckhout SG; Gorges B; Barthe L; Pelosi O; Safonova O; Giuli G
    J Synchrotron Radiat; 2008 Sep; 15(Pt 5):489-94. PubMed ID: 18728320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy.
    Fife JL; Rappaz M; Pistone M; Celcer T; Mikuljan G; Stampanoni M
    J Synchrotron Radiat; 2012 May; 19(Pt 3):352-8. PubMed ID: 22514169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ reaction furnace for real-time XRD studies.
    Riello P; Lausi A; Macleod J; Plaisier JR; Zerauschek G; Fornasiero P
    J Synchrotron Radiat; 2013 Jan; 20(Pt 1):194-6. PubMed ID: 23254674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isothermal furnace for long-term in situ and real-time X-radiography solidification experiments.
    Wegener M; Dreißigacker C; Becker M; Kargl F
    Rev Sci Instrum; 2021 Mar; 92(3):035114. PubMed ID: 33819986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deformation rig for synchrotron microtomography studies of geomaterials under conditions down to 10 km depth in the Earth.
    Renard F; Cordonnier B; Dysthe DK; Boller E; Tafforeau P; Rack A
    J Synchrotron Radiat; 2016 Jul; 23(Pt 4):1030-4. PubMed ID: 27359153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-radiography front tracking gradient furnace for directional solidification of bulk Al-alloys.
    Jafarizadeh-Koohbanani A; Steinbach S; Drescher J; Frenzel J; Kargl F
    Rev Sci Instrum; 2023 Aug; 94(8):. PubMed ID: 38065170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis, Design and Realization of a Furnace for In Situ Wettability Experiments at High Temperatures under X-ray Microtomography.
    Fedele R; Hameed F; Cefis N; Vergani G
    J Imaging; 2021 Nov; 7(11):. PubMed ID: 34821871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially resolved solid-phase temperature characterization in a sillimanite tube furnace using a broadband two-color ratio pyrometry.
    Deep S; Jagadeesh G
    Rev Sci Instrum; 2019 Jul; 90(7):074903. PubMed ID: 31370437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A furnace to 1200 K for in situ heating x-ray diffraction, small angle x-ray scattering, and x-ray absorption fine structure experiments.
    Cai Q; Wang Q; Wang W; Mo G; Zhang K; Cheng W; Xing X; Chen Z; Wu Z
    Rev Sci Instrum; 2008 Dec; 79(12):126101. PubMed ID: 19123592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel electromagnetic apparatus for
    Koe B; Abraham C; Bailey C; Greening B; Small M; Connolley T; Mi J
    HardwareX; 2020 Apr; 7():e00104. PubMed ID: 35495201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact low power infrared tube furnace for in situ X-ray powder diffraction.
    Doran A; Schlicker L; Beavers CM; Bhat S; Bekheet MF; Gurlo A
    Rev Sci Instrum; 2017 Jan; 88(1):013903. PubMed ID: 28147689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Mirror Furnace for Synchrotron Diffraction Experiments up to 1600K.
    Proffen T; Frey F; Plöckl H; Krane HG
    J Synchrotron Radiat; 1995 Sep; 2(Pt 5):229-32. PubMed ID: 16714820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.
    Asghar Z; Requena G; Sket F
    J Microsc; 2015 Jul; 259(1):1-9. PubMed ID: 25864713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low thermal conductivity and improved thermoelectric performance of nanocrystalline silicon germanium films by sputtering.
    Taborda JA; Romero JJ; Abad B; Muñoz-Rojo M; Mello A; Briones F; Gonzalez MS
    Nanotechnology; 2016 Apr; 27(17):175401. PubMed ID: 26967792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.