BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29979493)

  • 1. Azide- and Alkyne-Bearing Metabolic Chemical Reporters of Glycosylation Show Structure-Dependent Feedback Inhibition of the Hexosamine Biosynthetic Pathway.
    Walter LA; Batt AR; Darabedian N; Zaro BW; Pratt MR
    Chembiochem; 2018 Sep; 19(18):1918-1921. PubMed ID: 29979493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis.
    Ruegenberg S; Horn M; Pichlo C; Allmeroth K; Baumann U; Denzel MS
    Nat Commun; 2020 Feb; 11(1):687. PubMed ID: 32019926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase A controls the hexosamine pathway by tuning the feedback inhibition of GFAT-1.
    Ruegenberg S; Mayr FAMC; Atanassov I; Baumann U; Denzel MS
    Nat Commun; 2021 Apr; 12(1):2176. PubMed ID: 33846315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GFPT2/GFAT2 and AMDHD2 act in tandem to control the hexosamine pathway.
    Kroef V; Ruegenberg S; Horn M; Allmeroth K; Ebert L; Bozkus S; Miethe S; Elling U; Schermer B; Baumann U; Denzel MS
    Elife; 2022 Mar; 11():. PubMed ID: 35229715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexosamines, insulin resistance, and the complications of diabetes: current status.
    Buse MG
    Am J Physiol Endocrinol Metab; 2006 Jan; 290(1):E1-E8. PubMed ID: 16339923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a Direct Biosynthetic Pathway for UDP-
    Dadashipour M; Iwamoto M; Hossain MM; Akutsu JI; Zhang Z; Kawarabayasi Y
    J Bacteriol; 2018 May; 200(10):. PubMed ID: 29507091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of diabetes and hyperglycemia on the hexosamine synthesis pathway in rat muscle and liver.
    Robinson KA; Weinstein ML; Lindenmayer GE; Buse MG
    Diabetes; 1995 Dec; 44(12):1438-46. PubMed ID: 7589852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hexosamine biosynthesis in keratinocytes: roles of GFAT and GNPDA enzymes in the maintenance of UDP-GlcNAc content and hyaluronan synthesis.
    Oikari S; Makkonen K; Deen AJ; Tyni I; Kärnä R; Tammi RH; Tammi MI
    Glycobiology; 2016 Jul; 26(7):710-22. PubMed ID: 26887390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibiting the Hexosamine Biosynthetic Pathway Lowers O-GlcNAcylation Levels and Sensitizes Cancer to Environmental Stress.
    Walter LA; Lin YH; Halbrook CJ; Chuh KN; He L; Pedowitz NJ; Batt AR; Brennan CK; Stiles BL; Lyssiotis CA; Pratt MR
    Biochemistry; 2020 Sep; 59(34):3169-3179. PubMed ID: 31625393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic defects in the hexosamine and sialic acid biosynthesis pathway.
    Willems AP; van Engelen BG; Lefeber DJ
    Biochim Biophys Acta; 2016 Aug; 1860(8):1640-54. PubMed ID: 26721333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of exercise and feeding on the hexosamine biosynthetic pathway in rat skeletal muscle.
    Nelson BA; Robinson KA; Koning JS; Buse MG
    Am J Physiol; 1997 May; 272(5 Pt 1):E848-55. PubMed ID: 9176185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer.
    Akella NM; Ciraku L; Reginato MJ
    BMC Biol; 2019 Jul; 17(1):52. PubMed ID: 31272438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mTORC2 modulates the amplitude and duration of GFAT1 Ser-243 phosphorylation to maintain flux through the hexosamine pathway during starvation.
    Moloughney JG; Vega-Cotto NM; Liu S; Patel C; Kim PK; Wu CC; Albaciete D; Magaway C; Chang A; Rajput S; Su X; Werlen G; Jacinto E
    J Biol Chem; 2018 Oct; 293(42):16464-16478. PubMed ID: 30201609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the UDP-N-acetylglucosamine regulatory site of human glucosamine-6P synthase by saturation-transfer difference NMR and site-directed mutagenesis.
    Assrir N; Richez C; Durand P; Guittet E; Badet B; Lescop E; Badet-Denisot MA
    Biochimie; 2014 Feb; 97():39-48. PubMed ID: 24075873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Hexosamine Biosynthesis Pathway: Regulation and Function.
    Paneque A; Fortus H; Zheng J; Werlen G; Jacinto E
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long range molecular dynamics study of regulation of eukaryotic glucosamine-6-phosphate synthase activity by UDP-GlcNAc.
    Miszkiel A; Wojciechowski M; Milewski S
    J Mol Model; 2011 Dec; 17(12):3103-15. PubMed ID: 21360186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamine deprivation triggers NAGK-dependent hexosamine salvage.
    Campbell S; Mesaros C; Izzo L; Affronti H; Noji M; Schaffer BE; Tsang T; Sun K; Trefely S; Kruijning S; Blenis J; Blair IA; Wellen KE
    Elife; 2021 Nov; 10():. PubMed ID: 34844667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the hexosamine biosynthetic pathway in human tumor cells by multitargeted tandem mass spectrometry.
    Abdel Rahman AM; Ryczko M; Pawling J; Dennis JW
    ACS Chem Biol; 2013 Sep; 8(9):2053-62. PubMed ID: 23875632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4-Deoxy-4-fluoro-GalNAz (4FGalNAz) Is a Metabolic Chemical Reporter of O-GlcNAc Modifications, Highlighting the Notable Substrate Flexibility of O-GlcNAc Transferase.
    Jackson EG; Cutolo G; Yang B; Yarravarapu N; Burns MWN; Bineva-Todd G; Roustan C; Thoden JB; Lin-Jones HM; van Kuppevelt TH; Holden HM; Schumann B; Kohler JJ; Woo CM; Pratt MR
    ACS Chem Biol; 2022 Jan; 17(1):159-170. PubMed ID: 34931806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification.
    Chuh KN; Zaro BW; Piller F; Piller V; Pratt MR
    J Am Chem Soc; 2014 Sep; 136(35):12283-95. PubMed ID: 25153642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.