These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 29979778)

  • 1. Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile.
    Wang Z; Zeng S; Guo J; Qin T
    PLoS One; 2018; 13(7):e0200169. PubMed ID: 29979778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal charging profiles for mechanically constrained lithium-ion batteries.
    Suthar B; Ramadesigan V; De S; Braatz RD; Subramanian VR
    Phys Chem Chem Phys; 2014 Jan; 16(1):277-87. PubMed ID: 24252870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM.
    Zhang C; He Y; Yuan L; Xiang S; Wang J
    Comput Intell Neurosci; 2015; 2015():918305. PubMed ID: 26413090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiently photo-charging lithium-ion battery by perovskite solar cell.
    Xu J; Chen Y; Dai L
    Nat Commun; 2015 Aug; 6():8103. PubMed ID: 26311589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol for state-of-health prediction of lithium-ion batteries based on machine learning.
    Shu X; Shen S; Shen J; Zhang Y; Li G; Chen Z; Liu Y
    STAR Protoc; 2022 Jun; 3(2):101272. PubMed ID: 35403003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.
    Lee CY; Lee SJ; Tang MS; Chen PC
    Sensors (Basel); 2011; 11(10):9942-50. PubMed ID: 22163735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspective of material evolution Induced by sinusoidal reflex charging in lithium-ion batteries.
    K David H; Chen PT; Yan WM; Sangeetha T; Yang CJ
    Heliyon; 2024 May; 10(10):e30471. PubMed ID: 38765033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries.
    Jafari S; Byun YC
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Battery health evaluation using a short random segment of constant current charging.
    Deng Z; Hu X; Xie Y; Xu L; Li P; Lin X; Bian X
    iScience; 2022 May; 25(5):104260. PubMed ID: 35521525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture.
    Li L; Wang P; Chao KH; Zhou Y; Xie Y
    PLoS One; 2016; 11(9):e0163004. PubMed ID: 27632176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-of-Charge Estimation for Lithium-Ion Batteries Using Residual Convolutional Neural Networks.
    Wang YC; Shao NC; Chen GW; Hsu WS; Wu SC
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries.
    Lee JH; Lee IS
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Economic and Environmental Feasibility of Second-Life Lithium-Ion Batteries as Fast-Charging Energy Storage.
    Kamath D; Arsenault R; Kim HC; Anctil A
    Environ Sci Technol; 2020 Jun; 54(11):6878-6887. PubMed ID: 32343124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Data-Driven Approach to State of Health Estimation and Prediction for a Lithium-Ion Battery Pack of Electric Buses Based on Real-World Data.
    Xu N; Xie Y; Liu Q; Yue F; Zhao D
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State of charge estimation of lithium-ion batteries using fractional order sliding mode observer.
    Zhong Q; Zhong F; Cheng J; Li H; Zhong S
    ISA Trans; 2017 Jan; 66():448-459. PubMed ID: 27751516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques.
    Hannan MA; Lipu MSH; Hussain A; Ker PJ; Mahlia TMI; Mansor M; Ayob A; Saad MH; Dong ZY
    Sci Rep; 2020 Mar; 10(1):4687. PubMed ID: 32170100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impedance-based forecasting of lithium-ion battery performance amid uneven usage.
    Jones PK; Stimming U; Lee AA
    Nat Commun; 2022 Aug; 13(1):4806. PubMed ID: 35974010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking.
    Yoon J; Oh DX; Jo C; Lee J; Hwang DS
    Phys Chem Chem Phys; 2014 Dec; 16(46):25628-35. PubMed ID: 25351494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments.
    Mossali E; Picone N; Gentilini L; Rodrìguez O; Pérez JM; Colledani M
    J Environ Manage; 2020 Jun; 264():110500. PubMed ID: 32250918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ageing characterization data of lithium-ion battery with highly deteriorated state and wide range of state-of-health.
    Xia Z; Abu Qahouq JA
    Data Brief; 2022 Feb; 40():107727. PubMed ID: 35005130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.