These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 29979992)

  • 1. Postmitotic Fate Refinement in the Subplate.
    Mostajo-Radji MA; Pollen AA
    Cell Stem Cell; 2018 Jul; 23(1):7-9. PubMed ID: 29979992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages.
    Del Río JA; Martínez A; Auladell C; Soriano E
    Cereb Cortex; 2000 Aug; 10(8):784-801. PubMed ID: 10920050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. hPSC Modeling Reveals that Fate Selection of Cortical Deep Projection Neurons Occurs in the Subplate.
    Ozair MZ; Kirst C; van den Berg BL; Ruzo A; Rito T; Brivanlou AH
    Cell Stem Cell; 2018 Jul; 23(1):60-73.e6. PubMed ID: 29937203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of geniculocortical projections to visual cortex in rat: evidence early ingrowth and synaptogenesis.
    Kageyama GH; Robertson RT
    J Comp Neurol; 1993 Sep; 335(1):123-48. PubMed ID: 7691903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons.
    Kwan KY; Lam MM; Krsnik Z; Kawasawa YI; Lefebvre V; Sestan N
    Proc Natl Acad Sci U S A; 2008 Oct; 105(41):16021-6. PubMed ID: 18840685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study.
    Mrzljak L; Uylings HB; Kostovic I; Van Eden CG
    J Comp Neurol; 1988 May; 271(3):355-86. PubMed ID: 2454966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirement for subplate neurons in the formation of thalamocortical connections.
    Ghosh A; Antonini A; McConnell SK; Shatz CJ
    Nature; 1990 Sep; 347(6289):179-81. PubMed ID: 2395469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology of pioneer and follower growth cones in the developing cerebral cortex.
    Kim GJ; Shatz CJ; McConnell SK
    J Neurobiol; 1991 Sep; 22(6):629-42. PubMed ID: 1919567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-binding proteins in the human developing brain.
    Ulfig N
    Adv Anat Embryol Cell Biol; 2002; 165():III-IX, 1-92. PubMed ID: 12236093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex.
    Friauf E; Shatz CJ
    J Neurophysiol; 1991 Dec; 66(6):2059-71. PubMed ID: 1812236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunohistochemical localization of neurocan and L1 in the formation of thalamocortical pathway of developing rats.
    Fukuda T; Kawano H; Ohyama K; Li HP; Takeda Y; Oohira A; Kawamura K
    J Comp Neurol; 1997 Jun; 382(2):141-52. PubMed ID: 9183685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fibronectin-like molecule is present in the developing cat cerebral cortex and is correlated with subplate neurons.
    Chun JJ; Shatz CJ
    J Cell Biol; 1988 Mar; 106(3):857-72. PubMed ID: 3346327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early phenotype expression of cortical neurons: evidence that a subclass of migrating neurons have callosal axons.
    Schwartz ML; Rakic P; Goldman-Rakic PS
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1354-8. PubMed ID: 1705036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular matrix in early cortical development.
    Pearlman AL; Sheppard AM
    Prog Brain Res; 1996; 108():117-34. PubMed ID: 8979798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major glutamatergic projection from subplate into visual cortex during development.
    Finney EM; Stone JR; Shatz CJ
    J Comp Neurol; 1998 Aug; 398(1):105-18. PubMed ID: 9703030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unbiased Quantification of Subplate Neuron Loss following Neonatal Hypoxia-Ischemia in a Rat Model.
    Mikhailova A; Sunkara N; McQuillen PS
    Dev Neurosci; 2017; 39(1-4):171-181. PubMed ID: 28434006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caveolin1 Identifies a Specific Subpopulation of Cerebral Cortex Callosal Projection Neurons (CPN) Including Dual Projecting Cortical Callosal/Frontal Projection Neurons (CPN/FPN).
    MacDonald JL; Fame RM; Gillis-Buck EM; Macklis JD
    eNeuro; 2018; 5(1):. PubMed ID: 29379878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical target depletion and ingrowth of geniculocortical axons: implications for cortical specification.
    Woo TU; Finlay BL
    Cereb Cortex; 1996; 6(3):457-69. PubMed ID: 8670671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ntf3 acts downstream of Sip1 in cortical postmitotic neurons to control progenitor cell fate through feedback signaling.
    Parthasarathy S; Srivatsa S; Nityanandam A; Tarabykin V
    Development; 2014 Sep; 141(17):3324-30. PubMed ID: 25085976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of a unique 56-kDa polypeptide by neurons in the subplate zone of the developing cerebral cortex.
    Naegele JR; Barnstable CJ; Wahle PR
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):330-4. PubMed ID: 1703294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.