BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29980166)

  • 1. DcC4H and DcPER Are Important in Dynamic Changes of Lignin Content in Carrot Roots under Elevated Carbon Dioxide Stress.
    Wang YH; Wu XJ; Sun S; Xing GM; Wang GL; Que F; Khadr A; Feng K; Li T; Xu ZS; Xiong AS
    J Agric Food Chem; 2018 Aug; 66(30):8209-8220. PubMed ID: 29980166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome-based identification of genes revealed differential expression profiles and lignin accumulation during root development in cultivated and wild carrots.
    Wang GL; Huang Y; Zhang XY; Xu ZS; Wang F; Xiong AS
    Plant Cell Rep; 2016 Aug; 35(8):1743-55. PubMed ID: 27160835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot.
    Wang GL; Que F; Xu ZS; Wang F; Xiong AS
    Protoplasma; 2017 Mar; 254(2):839-848. PubMed ID: 27335006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.).
    Ma J; Li J; Xu Z; Wang F; Xiong A
    Acta Biochim Biophys Sin (Shanghai); 2018 May; 50(5):481-490. PubMed ID: 29617714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and Characterization of Terpene Synthases Potentially Involved in the Formation of Volatile Terpenes in Carrot (Daucus carota L.) Roots.
    Yahyaa M; Tholl D; Cormier G; Jensen R; Simon PW; Ibdah M
    J Agric Food Chem; 2015 May; 63(19):4870-8. PubMed ID: 25924989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturation-related changes of carrot lignins.
    Schäfer J; Trierweiler B; Bunzel M
    J Sci Food Agric; 2018 Feb; 98(3):1016-1023. PubMed ID: 28718909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genes crucial to carotenoid metabolism under elevated CO
    Song H; Lu Q; Hou L; Li M
    Sci Rep; 2021 Jun; 11(1):12073. PubMed ID: 34103616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of ascorbic acid biosynthesis and recycling during root development in carrot (Daucus carota L.).
    Wang GL; Xu ZS; Wang F; Li MY; Tan GF; Xiong AS
    Plant Physiol Biochem; 2015 Sep; 94():10-8. PubMed ID: 25956452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Pigment Accumulation in Carrot Leaves and Roots during Two Growing Periods.
    Perrin F; Brahem M; Dubois-Laurent C; Huet S; Jourdan M; Geoffriau E; Peltier D; Gagné S
    J Agric Food Chem; 2016 Feb; 64(4):906-12. PubMed ID: 26752004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia enhances lignification and affects the anatomical structure in hydroponic cultivation of carrot taproot.
    Que F; Wang GL; Feng K; Xu ZS; Wang F; Xiong AS
    Plant Cell Rep; 2018 Jul; 37(7):1021-1032. PubMed ID: 29680943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iTRAQ-Based Quantitative Proteomics and Transcriptomics Provide Insights Into the Importance of Expansins During Root Development in Carrot.
    Wang YH; Que F; Wang GL; Hao JN; Li T; Xu ZS; Xiong AS
    Front Genet; 2019; 10():247. PubMed ID: 30984239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression profiles of genes involved in jasmonic acid biosynthesis and signaling during growth and development of carrot.
    Wang G; Huang W; Li M; Xu Z; Wang F; Xiong A
    Acta Biochim Biophys Sin (Shanghai); 2016 Sep; 48(9):795-803. PubMed ID: 27325823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcript profiling of sucrose synthase genes involved in sucrose metabolism among four carrot (Daucus carota L.) cultivars reveals distinct patterns.
    Liu YJ; Wang GL; Ma J; Xu ZS; Wang F; Xiong AS
    BMC Plant Biol; 2018 Jan; 18(1):8. PubMed ID: 29304728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct transcription profile of genes involved in carotenoid biosynthesis among six different color carrot (Daucus carota L.) cultivars.
    Ma J; Xu Z; Tan G; Wang F; Xiong A
    Acta Biochim Biophys Sin (Shanghai); 2017 Sep; 49(9):817-826. PubMed ID: 28910981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into domestication of carrot from root transcriptome analyses.
    Rong J; Lammers Y; Strasburg JL; Schidlo NS; Ariyurek Y; de Jong TJ; Klinkhamer PG; Smulders MJ; Vrieling K
    BMC Genomics; 2014 Oct; 15(1):895. PubMed ID: 25311557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequencing, assembly, annotation, and gene expression: novel insights into the hormonal control of carrot root development revealed by a high-throughput transcriptome.
    Wang GL; Jia XL; Xu ZS; Wang F; Xiong AS
    Mol Genet Genomics; 2015 Aug; 290(4):1379-91. PubMed ID: 25666462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytokinin (6-benzylaminopurine) elevates lignification and the expression of genes involved in lignin biosynthesis of carrot.
    Khadr A; Wang YH; Zhang RR; Wang XR; Xu ZS; Xiong AS
    Protoplasma; 2020 Nov; 257(6):1507-1517. PubMed ID: 32577829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yield, chemical composition and nutritional quality responses of carrot, radish and turnip to elevated atmospheric carbon dioxide.
    Azam A; Khan I; Mahmood A; Hameed A
    J Sci Food Agric; 2013 Oct; 93(13):3237-44. PubMed ID: 23576218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 2.5-kb insert eliminates acid soluble invertase isozyme II transcript in carrot (Daucus carota L.) roots, causing high sucrose accumulation.
    Yau YY; Simon PW
    Plant Mol Biol; 2003 Sep; 53(1-2):151-62. PubMed ID: 14756313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exogenous abscisic acid suppresses the lignification and changes the growth, root anatomical structure and related gene profiles of carrot.
    Khadr A; Wang Y; Que F; Li T; Xu Z; Xiong A
    Acta Biochim Biophys Sin (Shanghai); 2020 Jan; 52(1):97-100. PubMed ID: 31897466
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.