BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 29980679)

  • 1. ETS transcription factors induce a unique UV damage signature that drives recurrent mutagenesis in melanoma.
    Mao P; Brown AJ; Esaki S; Lockwood S; Poon GMK; Smerdon MJ; Roberts SA; Wyrick JJ
    Nat Commun; 2018 Jul; 9(1):2626. PubMed ID: 29980679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High UV damage and low repair, but not cytosine deamination, stimulate mutation hotspots at ETS binding sites in melanoma.
    Duan M; Song S; Wasserman H; Lee PH; Liu KJ; Gordân R; He Y; Mao P
    Proc Natl Acad Sci U S A; 2024 Jan; 121(4):e2310854121. PubMed ID: 38241433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting recurrent passenger mutations in melanoma by targeted UV damage sequencing.
    Selvam K; Sivapragasam S; Poon GMK; Wyrick JJ
    Nat Commun; 2023 May; 14(1):2702. PubMed ID: 37169747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated pyrimidine dimer formation at distinct genomic bases underlies promoter mutation hotspots in UV-exposed cancers.
    Elliott K; Boström M; Filges S; Lindberg M; Van den Eynden J; Ståhlberg A; Clausen AR; Larsson E
    PLoS Genet; 2018 Dec; 14(12):e1007849. PubMed ID: 30586386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable interplay of UV-induced DNA damage and repair at transcription factor binding sites.
    Frigola J; Sabarinathan R; Gonzalez-Perez A; Lopez-Bigas N
    Nucleic Acids Res; 2021 Jan; 49(2):891-901. PubMed ID: 33347579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic sites hypersensitive to ultraviolet radiation.
    Premi S; Han L; Mehta S; Knight J; Zhao D; Palmatier MA; Kornacker K; Brash DE
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24196-24205. PubMed ID: 31723047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide profiles of UV lesion susceptibility, repair, and mutagenic potential in melanoma.
    Perez BS; Wong KM; Schwartz EK; Herrera RE; King DA; García-Nieto PE; Morrison AJ
    Mutat Res; 2021; 823():111758. PubMed ID: 34333390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The major mechanism of melanoma mutations is based on deamination of cytosine in pyrimidine dimers as determined by circle damage sequencing.
    Jin SG; Pettinga D; Johnson J; Li P; Pfeifer GP
    Sci Adv; 2021 Jul; 7(31):. PubMed ID: 34330711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CTCF binding modulates UV damage formation to promote mutation hot spots in melanoma.
    Sivapragasam S; Stark B; Albrecht AV; Bohm KA; Mao P; Emehiser RG; Roberts SA; Hrdlicka PJ; Poon GMK; Wyrick JJ
    EMBO J; 2021 Oct; 40(20):e107795. PubMed ID: 34487363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution.
    Mao P; Smerdon MJ; Roberts SA; Wyrick JJ
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):9057-62. PubMed ID: 27457959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Role for Autoinhibition in Preventing Dimerization of the Transcription Factor ETS1.
    Samorodnitsky D; Szyjka C; Koudelka GB
    J Biol Chem; 2015 Sep; 290(36):22101-10. PubMed ID: 26195629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Ultraviolet A-induced DNA damage: role in skin cancer].
    Beani JC
    Bull Acad Natl Med; 2014 Feb; 198(2):273-95. PubMed ID: 26263704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosome positions establish an extended mutation signature in melanoma.
    Brown AJ; Mao P; Smerdon MJ; Wyrick JJ; Roberts SA
    PLoS Genet; 2018 Nov; 14(11):e1007823. PubMed ID: 30485262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recurrent Noncoding Mutations in Skin Cancers: UV Damage Susceptibility or Repair Inhibition as Primary Driver?
    Roberts SA; Brown AJ; Wyrick JJ
    Bioessays; 2019 Mar; 41(3):e1800152. PubMed ID: 30801747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence and time-dependent deamination of cytosine bases in UVB-induced cyclobutane pyrimidine dimers in vivo.
    Tu Y; Dammann R; Pfeifer GP
    J Mol Biol; 1998 Nov; 284(2):297-311. PubMed ID: 9813119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide maps of rare and atypical UV photoproducts reveal distinct patterns of damage formation and mutagenesis in yeast chromatin.
    Bohm KA; Morledge-Hampton B; Stevison S; Mao P; Roberts SA; Wyrick JJ
    Proc Natl Acad Sci U S A; 2023 Mar; 120(10):e2216907120. PubMed ID: 36853943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific analysis of UV-induced cyclobutane pyrimidine dimers in nucleotide excision repair-proficient and -deficient hamster cells: Lack of correlation with mutational spectra.
    Vreeswijk MP; Meijers CM; Giphart-Gassler M; Vrieling H; van Zeeland AA; Mullenders LH; Loenen WA
    Mutat Res; 2009 Apr; 663(1-2):7-14. PubMed ID: 19150617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclobutane Pyrimidine Dimer Hyperhotspots as Sensitive Indicators of Keratinocyte UV Exposure
    Garcia-Ruiz A; Kornacker K; Brash DE
    Photochem Photobiol; 2022 Sep; 98(5):987-997. PubMed ID: 35944237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Base-resolution UV footprinting by sequencing reveals distinctive damage signatures for DNA-binding proteins.
    Elliott K; Singh VK; Boström M; Larsson E
    Nat Commun; 2023 May; 14(1):2701. PubMed ID: 37169761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Mapping of UV-Induced DNA Damage with CPD-Seq.
    Mao P; Wyrick JJ
    Methods Mol Biol; 2020; 2175():79-94. PubMed ID: 32681485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.