These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 29981192)
1. Effects of football simulated fatigue on neuromuscular function and whole-body response to disturbances in balance. Behan FP; Willis S; Pain MTG; Folland JP Scand J Med Sci Sports; 2018 Dec; 28(12):2547-2557. PubMed ID: 29981192 [TBL] [Abstract][Full Text] [Related]
2. Torque steadiness and neuromuscular responses following fatiguing concentric exercise of the knee extensor and flexor muscles in young and older individuals. Wu R; Delahunt E; Ditroilo M; Ferri Marini C; De Vito G Exp Gerontol; 2019 Sep; 124():110636. PubMed ID: 31195103 [TBL] [Abstract][Full Text] [Related]
3. Explosive voluntary torque is related to whole-body response to unexpected perturbations. Behan FP; Pain MTG; Folland JP J Biomech; 2018 Nov; 81():86-92. PubMed ID: 30268357 [TBL] [Abstract][Full Text] [Related]
4. Associations between Hamstring Fatigue and Sprint Kinematics during a Simulated Football (Soccer) Match. Wilmes E; DE Ruiter CJ; Bastiaansen BJC; Goedhart EA; Brink MS; VAN DER Helm FCT; Savelsbergh GJP Med Sci Sports Exerc; 2021 Dec; 53(12):2586-2595. PubMed ID: 34265817 [TBL] [Abstract][Full Text] [Related]
5. Hamstring rate of torque development is more affected than maximal voluntary contraction after a professional soccer match. Grazioli R; Lopez P; Andersen LL; Machado CLF; Pinto MD; Cadore EL; Pinto RS Eur J Sport Sci; 2019 Nov; 19(10):1336-1341. PubMed ID: 31099729 [TBL] [Abstract][Full Text] [Related]
6. Muscle fatigue induced by exercise simulating the work rate of competitive soccer. Rahnama N; Reilly T; Lees A; Graham-Smith P J Sports Sci; 2003 Nov; 21(11):933-42. PubMed ID: 14626373 [TBL] [Abstract][Full Text] [Related]
7. Fatigue and rapid hamstring/quadriceps force capacity in professional soccer players. Greco CC; da Silva WL; Camarda SR; Denadai BS Clin Physiol Funct Imaging; 2013 Jan; 33(1):18-23. PubMed ID: 23216761 [TBL] [Abstract][Full Text] [Related]
8. Does muscle imbalance affect fatigue after soccer specific intermittent protocol? de Abreu Camarda SR; Denadai BS J Sci Med Sport; 2012 Jul; 15(4):355-60. PubMed ID: 22197067 [TBL] [Abstract][Full Text] [Related]
9. Plantar flexor neuromuscular adjustments following match-play football in hot and cool conditions. Girard O; Nybo L; Mohr M; Racinais S Scand J Med Sci Sports; 2015 Jun; 25 Suppl 1():154-63. PubMed ID: 25943666 [TBL] [Abstract][Full Text] [Related]
10. Recovery kinetics of knee flexor and extensor strength after a football match. Draganidis D; Chatzinikolaou A; Avloniti A; Barbero-Álvarez JC; Mohr M; Malliou P; Gourgoulis V; Deli CK; Douroudos II; Margonis K; Gioftsidou A; Flouris AD; Jamurtas AZ; Koutedakis Y; Fatouros IG PLoS One; 2015; 10(6):e0128072. PubMed ID: 26043222 [TBL] [Abstract][Full Text] [Related]
11. Quantification of functional knee flexor to extensor moment ratio using isokinetics and electromyography. Kellis E; Katis A J Athl Train; 2007; 42(4):477-85. PubMed ID: 18174936 [TBL] [Abstract][Full Text] [Related]
12. Effects of plyometric and pneumatic explosive strength training on neuromuscular function and dynamic balance control in 60-70year old males. Piirainen JM; Cronin NJ; Avela J; Linnamo V J Electromyogr Kinesiol; 2014 Apr; 24(2):246-52. PubMed ID: 24581701 [TBL] [Abstract][Full Text] [Related]
13. Hamstring muscle fatigue and central motor output during a simulated soccer match. Marshall PW; Lovell R; Jeppesen GK; Andersen K; Siegler JC PLoS One; 2014; 9(7):e102753. PubMed ID: 25047547 [TBL] [Abstract][Full Text] [Related]
14. Direct and indirect measurement of neuromuscular fatigue in Canadian football players. Clarke N; Farthing JP; Lanovaz JL; Krentz JR Appl Physiol Nutr Metab; 2015 May; 40(5):464-73. PubMed ID: 25894521 [TBL] [Abstract][Full Text] [Related]
15. Age-related fatigability in knee extensors and knee flexors during dynamic fatiguing contractions. Wu R; De Vito G; Lowery MM; O'Callaghan B; Ditroilo M J Electromyogr Kinesiol; 2022 Feb; 62():102626. PubMed ID: 34998161 [TBL] [Abstract][Full Text] [Related]
16. Relationship Between Explosive Strength Capacity of the Knee Muscles and Deceleration Performance in Female Professional Soccer Players. Zhang Q; Léam A; Fouré A; Wong DP; Hautier CA Front Physiol; 2021; 12():723041. PubMed ID: 34707509 [TBL] [Abstract][Full Text] [Related]
17. Effects of far-infrared radiation lamp therapy on recovery from a simulated soccer-match in elite female soccer players. Tseng WC; Nosaka K; Chou TY; Howatson G; Chen TC Scand J Med Sci Sports; 2024 Apr; 34(4):e14615. PubMed ID: 38556845 [TBL] [Abstract][Full Text] [Related]
18. The use of the functional H:Q ratio to assess fatigue in soccer. Delextrat A; Gregory J; Cohen D Int J Sports Med; 2010 Mar; 31(3):192-7. PubMed ID: 20157872 [TBL] [Abstract][Full Text] [Related]
19. Larger plantar flexion torque variability implies less stable balance in the young: an association affected by knee position. Mello EM; Magalhães FH; Kohn AF Hum Mov Sci; 2013 Dec; 32(6):1310-24. PubMed ID: 24060221 [TBL] [Abstract][Full Text] [Related]
20. Strength and size ratios between reciprocal muscle groups in the thigh and lower leg of male collegiate soccer players. Akagi R; Tohdoh Y; Takahashi H Clin Physiol Funct Imaging; 2014 Mar; 34(2):121-5. PubMed ID: 23865492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]