BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 29981237)

  • 21. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine.
    Liu Y; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J
    Metab Eng; 2013 Sep; 19():107-15. PubMed ID: 23876412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of culture medium confers high-specificity production of isopentenol in Bacillus subtilis.
    Phulara SC; Chaturvedi P; Chaurasia D; Diwan B; Gupta P
    J Biosci Bioeng; 2019 Apr; 127(4):458-464. PubMed ID: 30862359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis.
    Westbrook AW; Ren X; Moo-Young M; Chou CP
    Biotechnol Bioeng; 2018 Jan; 115(1):216-231. PubMed ID: 28941282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine.
    Niu T; Liu Y; Li J; Koffas M; Du G; Alper HS; Liu L
    ACS Synth Biol; 2018 Oct; 7(10):2423-2435. PubMed ID: 30138558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production.
    Yoon J; Woo HM
    Biotechnol Bioeng; 2018 Aug; 115(8):2067-2074. PubMed ID: 29704438
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain.
    Zhang Q; Wu Y; Gong M; Zhang H; Liu Y; Lv X; Li J; Du G; Liu L
    Essays Biochem; 2021 Jul; 65(2):173-185. PubMed ID: 34028523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis.
    García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond.
    Cui W; Han L; Suo F; Liu Z; Zhou L; Zhou Z
    World J Microbiol Biotechnol; 2018 Sep; 34(10):145. PubMed ID: 30203131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling leucine's metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis.
    Coutte F; Niehren J; Dhali D; John M; Versari C; Jacques P
    Biotechnol J; 2015 Aug; 10(8):1216-34. PubMed ID: 26220295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved 2-methyl-1-propanol production in an engineered Bacillus subtilis by constructing inducible pathways.
    Li S; Jia X; Wen J
    Biotechnol Lett; 2012 Dec; 34(12):2253-8. PubMed ID: 22941373
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system.
    Zhang K; Duan X; Wu J
    Sci Rep; 2016 Jun; 6():27943. PubMed ID: 27305971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Programmable CRISPR/Cas9 Toolkit Improves Lycopene Production in Bacillus subtilis.
    Liu Y; Cheng H; Li H; Zhang Y; Wang M
    Appl Environ Microbiol; 2023 Jun; 89(6):e0023023. PubMed ID: 37272803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids.
    Arendt P; Miettinen K; Pollier J; De Rycke R; Callewaert N; Goossens A
    Metab Eng; 2017 Mar; 40():165-175. PubMed ID: 28216107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis.
    Wu Y; Chen T; Liu Y; Tian R; Lv X; Li J; Du G; Chen J; Ledesma-Amaro R; Liu L
    Nucleic Acids Res; 2020 Jan; 48(2):996-1009. PubMed ID: 31799627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing methods of genetic manipulation in Bacillus subtilis for expression of recombinant enzyme: Replicative or integrative (CRISPR-Cas9) plasmid?
    Santos KO; Costa-Filho J; Spagnol KL; Marins LF
    J Microbiol Methods; 2019 Sep; 164():105667. PubMed ID: 31295508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Establishment and application of multiplexed CRISPR interference system in Bacillus licheniformis.
    Zhan Y; Xu Y; Zheng P; He M; Sun S; Wang D; Cai D; Ma X; Chen S
    Appl Microbiol Biotechnol; 2020 Jan; 104(1):391-403. PubMed ID: 31745574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin.
    Wang M; Fu J; Zhang X; Chen T
    Biotechnol Lett; 2012 Oct; 34(10):1877-85. PubMed ID: 22714279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose.
    Yan P; Wu Y; Yang L; Wang Z; Chen T
    Biotechnol Lett; 2018 Feb; 40(2):393-398. PubMed ID: 29236191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a CRISPR-Cas9 Tool Kit for Comprehensive Engineering of Bacillus subtilis.
    Westbrook AW; Moo-Young M; Chou CP
    Appl Environ Microbiol; 2016 Aug; 82(16):4876-95. PubMed ID: 27260361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.