BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29981408)

  • 1. In-situ forming PLGA implants for intraocular dexamethasone delivery.
    Bode C; Kranz H; Siepmann F; Siepmann J
    Int J Pharm; 2018 Sep; 548(1):337-348. PubMed ID: 29981408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ forming PLGA implants: Towards less toxic solvents.
    Ramos F; Willart JF; Neut C; Agossa K; Siepmann J; Siepmann F
    Int J Pharm; 2024 May; 657():124121. PubMed ID: 38621617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-situ forming composite implants for periodontitis treatment: How the formulation determines system performance.
    Do MP; Neut C; Metz H; Delcourt E; Mäder K; Siepmann J; Siepmann F
    Int J Pharm; 2015; 486(1-2):38-51. PubMed ID: 25791762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concomitant monitoring of implant formation and drug release of in situ forming poly (lactide-co-glycolide acid) implants in a hydrogel matrix mimicking the subcutis using UV-vis imaging.
    Sun Y; Jensen H; Petersen NJ; Larsen SW; Østergaard J
    J Pharm Biomed Anal; 2018 Feb; 150():95-106. PubMed ID: 29216591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic analysis of PLGA/HPMC-based in-situ forming implants for periodontitis treatment.
    Do MP; Neut C; Metz H; Delcourt E; Siepmann J; Mäder K; Siepmann F
    Eur J Pharm Biopharm; 2015 Aug; 94():273-83. PubMed ID: 26047797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Often neglected: PLGA/PLA swelling orchestrates drug release: HME implants.
    Bode C; Kranz H; Fivez A; Siepmann F; Siepmann J
    J Control Release; 2019 Jul; 306():97-107. PubMed ID: 31150749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the test method on in vitro drug release from intravitreal model implants containing dexamethasone or fluorescein sodium in poly (d,l-lactide-co-glycolide) or polycaprolactone.
    Stein S; Auel T; Kempin W; Bogdahn M; Weitschies W; Seidlitz A
    Eur J Pharm Biopharm; 2018 Jun; 127():270-278. PubMed ID: 29490233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coloring of PLGA implants to better understand the underlying drug release mechanisms.
    Bode C; Kranz H; Siepmann F; Siepmann J
    Int J Pharm; 2019 Oct; 569():118563. PubMed ID: 31351179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive characterization of the effect of varying PLGA molecular weight blends on in situ forming implant behavior using ultrasound imaging.
    Solorio L; Olear AM; Hamilton JI; Patel RB; Beiswenger AC; Wallace JE; Zhou H; Exner AA
    Theranostics; 2012; 2(11):1064-77. PubMed ID: 23227123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-invasive in vivo characterization of microclimate pH inside in situ forming PLGA implants using multispectral fluorescence imaging.
    Schädlich A; Kempe S; Mäder K
    J Control Release; 2014 Apr; 179():52-62. PubMed ID: 24503251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-situ forming implants for the treatment of periodontal diseases: Simultaneous controlled release of an antiseptic and an anti-inflammatory drug.
    Lizambard M; Menu T; Fossart M; Bassand C; Agossa K; Huck O; Neut C; Siepmann F
    Int J Pharm; 2019 Dec; 572():118833. PubMed ID: 31715363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PLGA implants: How Poloxamer/PEO addition slows down or accelerates polymer degradation and drug release.
    Hamoudi-Ben Yelles MC; Tran Tan V; Danede F; Willart JF; Siepmann J
    J Control Release; 2017 May; 253():19-29. PubMed ID: 28284831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do in situ forming PLG/NMP implants behave similar in vitro and in vivo? A non-invasive and quantitative EPR investigation on the mechanisms of the implant formation process.
    Kempe S; Metz H; Mäder K
    J Control Release; 2008 Sep; 130(3):220-5. PubMed ID: 18611421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres.
    Zolnik BS; Burgess DJ
    J Control Release; 2008 Apr; 127(2):137-45. PubMed ID: 18282629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved small molecule drug release from in situ forming poly(lactic-co-glycolic acid) scaffolds incorporating poly(β-amino ester) and hydroxyapatite microparticles.
    Fisher PD; Palomino P; Milbrandt TA; Hilt JZ; Puleo DA
    J Biomater Sci Polym Ed; 2014; 25(11):1174-93. PubMed ID: 24903524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation and characterization of injectable poly(DL-lactide-co-glycolide) implants loaded with N-acetylcysteine, a MMP inhibitor.
    Desai KG; Mallery SR; Schwendeman SP
    Pharm Res; 2008 Mar; 25(3):586-97. PubMed ID: 17891553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems.
    Gasmi H; Siepmann F; Hamoudi MC; Danede F; Verin J; Willart JF; Siepmann J
    Int J Pharm; 2016 Nov; 514(1):189-199. PubMed ID: 27543353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: in vitro release, pharmacokinetics, and stability.
    Ahmed TA; Ibrahim HM; Samy AM; Kaseem A; Nutan MT; Hussain MD
    AAPS PharmSciTech; 2014 Jun; 15(3):772-80. PubMed ID: 24648158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ forming phase-inversion implants for sustained ocular delivery of triamcinolone acetonide.
    Sheshala R; Hong GC; Yee WP; Meka VS; Thakur RRS
    Drug Deliv Transl Res; 2019 Apr; 9(2):534-542. PubMed ID: 29484530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.