BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 29981443)

  • 1. The role of nuclear matrix protein HNRNPU in maintaining the architecture of 3D genome.
    Zhang L; Song D; Zhu B; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():161-167. PubMed ID: 29981443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes.
    Fan H; Lv P; Huo X; Wu J; Wang Q; Cheng L; Liu Y; Tang QQ; Zhang L; Zhang F; Zheng X; Wu H; Wen B
    Genome Res; 2018 Feb; 28(2):192-202. PubMed ID: 29273625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of 3D genome organization in development and cell differentiation.
    Zheng H; Xie W
    Nat Rev Mol Cell Biol; 2019 Sep; 20(9):535-550. PubMed ID: 31197269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deficiency of the Heterogeneous Nuclear Ribonucleoprotein U locus leads to delayed hindbrain neurogenesis.
    Mastropasqua F; Oksanen M; Soldini C; Alatar S; Arora A; Ballarino R; Molinari M; Agostini F; Poulet A; Watts M; Rabkina I; Becker M; Li D; Anderlid BM; Isaksson J; Lundin Remnelius K; Moslem M; Jacob Y; Falk A; Crosetto N; Bienko M; Santini E; Borgkvist A; Bölte S; Tammimies K
    Biol Open; 2023 Oct; 12(10):. PubMed ID: 37815090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HNRNPU's multi-tasking is essential for proper cortical development.
    Sapir T; Reiner O
    Bioessays; 2023 Sep; 45(9):e2300039. PubMed ID: 37439444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture.
    Cremer T; Kreth G; Koester H; Fink RH; Heintzmann R; Cremer M; Solovei I; Zink D; Cremer C
    Crit Rev Eukaryot Gene Expr; 2000; 10(2):179-212. PubMed ID: 11186332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs.
    Nozawa RS; Boteva L; Soares DC; Naughton C; Dun AR; Buckle A; Ramsahoye B; Bruton PC; Saleeb RS; Arnedo M; Hill B; Duncan RR; Maciver SK; Gilbert N
    Cell; 2017 Jun; 169(7):1214-1227.e18. PubMed ID: 28622508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights about genome function from spatial organization of the genome.
    Roy SS; Mukherjee AK; Chowdhury S
    Hum Genomics; 2018 Feb; 12(1):8. PubMed ID: 29458419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. hnRNPU/TrkB Defines a Chromatin Accessibility Checkpoint for Liver Injury and Nonalcoholic Steatohepatitis Pathogenesis.
    Xiong J; Liu T; Mi L; Kuang H; Xiong X; Chen Z; Li S; Lin JD
    Hepatology; 2020 Apr; 71(4):1228-1246. PubMed ID: 31469911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell division requires RNA eviction from condensing chromosomes.
    Sharp JA; Perea-Resa C; Wang W; Blower MD
    J Cell Biol; 2020 Nov; 219(11):. PubMed ID: 33053167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.
    Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear organization by satellite DNA, SAF-A/hnRNPU and matrix attachment regions.
    Podgornaya OI
    Semin Cell Dev Biol; 2022 Aug; 128():61-68. PubMed ID: 35484025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organizational principles of 3D genome architecture.
    Rowley MJ; Corces VG
    Nat Rev Genet; 2018 Dec; 19(12):789-800. PubMed ID: 30367165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Chromatin Architecture of Large Plant Genomes Determined by Local A/B Compartments.
    Dong P; Tu X; Chu PY; Lü P; Zhu N; Grierson D; Du B; Li P; Zhong S
    Mol Plant; 2017 Dec; 10(12):1497-1509. PubMed ID: 29175436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tour of 3D genome with a focus on CTCF.
    Wang DC; Wang W; Zhang L; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionarily Conserved Principles Predict 3D Chromatin Organization.
    Rowley MJ; Nichols MH; Lyu X; Ando-Kuri M; Rivera ISM; Hermetz K; Wang P; Ruan Y; Corces VG
    Mol Cell; 2017 Sep; 67(5):837-852.e7. PubMed ID: 28826674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin-driven behavior of topologically associating domains.
    Ciabrelli F; Cavalli G
    J Mol Biol; 2015 Feb; 427(3):608-25. PubMed ID: 25280896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells.
    Calandrelli R; Wen X; Charles Richard JL; Luo Z; Nguyen TC; Chen CJ; Qi Z; Xue S; Chen W; Yan Z; Wu W; Zaleta-Rivera K; Hu R; Yu M; Wang Y; Li W; Ma J; Ren B; Zhong S
    Nat Commun; 2023 Oct; 14(1):6519. PubMed ID: 37845234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional folding dynamics of the Xenopus tropicalis genome.
    Niu L; Shen W; Shi Z; Tan Y; He N; Wan J; Sun J; Zhang Y; Huang Y; Wang W; Fang C; Li J; Zheng P; Cheung E; Chen Y; Li L; Hou C
    Nat Genet; 2021 Jul; 53(7):1075-1087. PubMed ID: 34099928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.