These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29981865)

  • 1. CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9.
    Jakočiūnas T; Pedersen LE; Lis AV; Jensen MK; Keasling JD
    Metab Eng; 2018 Jul; 48():288-296. PubMed ID: 29981865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CasPER: A CRISPR/Cas9-Based Method for Directed Evolution in Genomic Loci in Saccharomyces cerevisiae.
    Jakočiūnas T; Jensen MK; Keasling JD
    Methods Mol Biol; 2022; 2513():23-37. PubMed ID: 35781198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Stress Tolerance of Saccharomyces cerevisiae by CRISPR-Cas-Mediated Genome Evolution.
    Mitsui R; Yamada R; Ogino H
    Appl Biochem Biotechnol; 2019 Nov; 189(3):810-821. PubMed ID: 31119529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.
    Jakočiūnas T; Bonde I; Herrgård M; Harrison SJ; Kristensen M; Pedersen LE; Jensen MK; Keasling JD
    Metab Eng; 2015 Mar; 28():213-222. PubMed ID: 25638686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient targeted mutation of genomic essential genes in yeast Saccharomyces cerevisiae.
    Yang S; Cao X; Yu W; Li S; Zhou YJ
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):3037-3047. PubMed ID: 32043190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A synthetic RNA-mediated evolution system in yeast.
    Jensen ED; Laloux M; Lehka BJ; Pedersen LE; Jakočiūnas T; Jensen MK; Keasling JD
    Nucleic Acids Res; 2021 Sep; 49(15):e88. PubMed ID: 34107026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted Diversification in the
    Tou CJ; Schaffer DV; Dueber JE
    ACS Synth Biol; 2020 Jul; 9(7):1911-1916. PubMed ID: 32485105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision.
    Bao Z; HamediRad M; Xue P; Xiao H; Tasan I; Chao R; Liang J; Zhao H
    Nat Biotechnol; 2018 Jul; 36(6):505-508. PubMed ID: 29734295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and Error-Free Site-Directed Mutagenesis by a PCR-Free In Vitro CRISPR/Cas9-Mediated Mutagenic System.
    She W; Ni J; Shui K; Wang F; He R; Xue J; Reetz MT; Li A; Ma L
    ACS Synth Biol; 2018 Sep; 7(9):2236-2244. PubMed ID: 30075075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted
    Skrekas C; Limeta A; Siewers V; David F
    ACS Synth Biol; 2023 Aug; 12(8):2278-2289. PubMed ID: 37486333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Genomewide Evolution-Based CRISPR/Cas9 with Donor-Free (GEbCD) for Developing Robust and Productive Industrial Yeast.
    Zhang J; Zhao G; Bai W; Chen Y; Zhang Y; Li F; Wang M; Shen Y; Wang Y; Wang X; Li C
    ACS Synth Biol; 2024 Aug; 13(8):2335-2346. PubMed ID: 39012160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9 Genome Engineering in Saccharomyces cerevisiae Cells.
    Ryan OW; Poddar S; Cate JH
    Cold Spring Harb Protoc; 2016 Jun; 2016(6):. PubMed ID: 27250940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SMOOT libraries and phage-induced directed evolution of Cas9 to engineer reduced off-target activity.
    Cerchione D; Loveluck K; Tillotson EL; Harbinski F; DaSilva J; Kelley CP; Keston-Smith E; Fernandez CA; Myer VE; Jayaram H; Steinberg BE
    PLoS One; 2020; 15(4):e0231716. PubMed ID: 32298334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delta Integration CRISPR-Cas (Di-CRISPR) in Saccharomyces cerevisiae.
    Shi S; Liang Y; Ang EL; Zhao H
    Methods Mol Biol; 2019; 1927():73-91. PubMed ID: 30788786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae.
    Jakočiūnas T; Rajkumar AS; Zhang J; Arsovska D; Rodriguez A; Jendresen CB; Skjødt ML; Nielsen AT; Borodina I; Jensen MK; Keasling JD
    ACS Synth Biol; 2015 Nov; 4(11):1226-34. PubMed ID: 25781611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cpf1-assisted efficient genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae.
    Li ZH; Liu M; Wang FQ; Wei DZ
    Biotechnol Lett; 2018 Aug; 40(8):1253-1261. PubMed ID: 29797148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cpf1 facilitated large fragment deletion in Saccharomyces cerevisiae.
    Li ZH; Liu M; Lyu XM; Wang FQ; Wei DZ
    J Basic Microbiol; 2018 Dec; 58(12):1100-1104. PubMed ID: 30198089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window.
    Halperin SO; Tou CJ; Wong EB; Modavi C; Schaffer DV; Dueber JE
    Nature; 2018 Aug; 560(7717):248-252. PubMed ID: 30069054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.