These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29982052)

  • 1. Hydrothermal hydrolysis pretreatment of microalgae slurries in a continuous reactor under subcritical conditions for large-scale application.
    Fu Q; Zhang H; Chen H; Liao Q; Xia A; Huang Y; Zhu X; Reungsang A; Liu Z
    Bioresour Technol; 2018 Oct; 266():306-314. PubMed ID: 29982052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal hydrolysis of algal biomass for biofuels production: A review.
    Chen H; Xia A; Zhu X; Huang Y; Zhu X; Liao Q
    Bioresour Technol; 2022 Jan; 344(Pt B):126213. PubMed ID: 34715338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheokinetics of microalgae slurry during hydrothermal pretreatment processes.
    Chen H; Fu Q; Liao Q; Xiao C; Huang Y; Xia A; Zhu X; Kang Z
    Bioresour Technol; 2019 Oct; 289():121650. PubMed ID: 31228746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological properties of microalgae slurry for application in hydrothermal pretreatment systems.
    Chen H; Fu Q; Liao Q; Zhang H; Huang Y; Xia A; Zhu X
    Bioresour Technol; 2018 Feb; 249():599-604. PubMed ID: 29091843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exergy analyses of biogas production from microalgae biomass via anaerobic digestion.
    Xiao C; Liao Q; Fu Q; Huang Y; Xia A; Shen W; Chen H; Zhu X
    Bioresour Technol; 2019 Oct; 289():121709. PubMed ID: 31276992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Fluid Dynamics simulation of hydrothermal liquefaction of microalgae in a continuous plug-flow reactor.
    Ranganathan P; Savithri S
    Bioresour Technol; 2018 Jun; 258():151-157. PubMed ID: 29525589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical Pretreatment Methods for Improving Microalgae Anaerobic Biodegradability.
    Córdova O; Passos F; Chamy R
    Appl Biochem Biotechnol; 2018 May; 185(1):114-126. PubMed ID: 29082481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of strain-specific parameters on hydrothermal liquefaction of microalgae.
    López Barreiro D; Zamalloa C; Boon N; Vyverman W; Ronsse F; Brilman W; Prins W
    Bioresour Technol; 2013 Oct; 146():463-471. PubMed ID: 23958678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis.
    Sarker TR; Pattnaik F; Nanda S; Dalai AK; Meda V; Naik S
    Chemosphere; 2021 Dec; 284():131372. PubMed ID: 34323806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water.
    Gai C; Li Y; Peng N; Fan A; Liu Z
    Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcritical n-hexane/isopropanol extraction of lipid from wet microalgal pastes of Scenedesmus obliquus.
    Bian X; Jin W; Gu Q; Zhou X; Xi Y; Tu R; Han SF; Xie GJ; Gao SH; Wang Q
    World J Microbiol Biotechnol; 2018 Feb; 34(3):39. PubMed ID: 29460187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single- and two-step hydrothermal liquefaction of microalgae in a semi-continuous reactor: Effect of the operating parameters.
    Prapaiwatcharapan K; Sunphorka S; Kuchonthara P; Kangvansaichol K; Hinchiranan N
    Bioresour Technol; 2015 Sep; 191():426-32. PubMed ID: 25913031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process.
    Leng L; Li J; Wen Z; Zhou W
    Bioresour Technol; 2018 May; 256():529-542. PubMed ID: 29459104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp.
    Wang H; Ji C; Bi S; Zhou P; Chen L; Liu T
    Bioresour Technol; 2014 Nov; 172():169-173. PubMed ID: 25260180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pretreatment of microalgal biomass for enhanced recovery/extraction of reducing sugars and proteins.
    Eldalatony MM; Kabra AN; Hwang JH; Govindwar SP; Kim KH; Kim H; Jeon BH
    Bioprocess Biosyst Eng; 2016 Jan; 39(1):95-103. PubMed ID: 26508325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal liquefaction (HTL) of animal by-products: Influence of operating conditions.
    León M; Marcilla AF; García ÁN
    Waste Manag; 2019 Nov; 99():49-59. PubMed ID: 31472440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction.
    López Barreiro D; Samorì C; Terranella G; Hornung U; Kruse A; Prins W
    Bioresour Technol; 2014 Dec; 174():256-65. PubMed ID: 25463806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of processing conditions on biocrude yields from fast hydrothermal liquefaction of microalgae.
    Faeth JL; Savage PE
    Bioresour Technol; 2016 Apr; 206():290-293. PubMed ID: 26879204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate.
    Ekpo U; Ross AB; Camargo-Valero MA; Williams PT
    Bioresour Technol; 2016 Jan; 200():951-60. PubMed ID: 26615335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal treatment of oleaginous yeast for the recovery of free fatty acids for use in advanced biofuel production.
    Espinosa-Gonzalez I; Parashar A; Bressler DC
    J Biotechnol; 2014 Oct; 187():10-5. PubMed ID: 25034431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.