These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29982062)

  • 41. Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst.
    Loy ACM; Gan DKW; Yusup S; Chin BLF; Lam MK; Shahbaz M; Unrean P; Acda MN; Rianawati E
    Bioresour Technol; 2018 Aug; 261():213-222. PubMed ID: 29665455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Devolatilisation kinetics and pyrolytic analyses of Tectona grandis (teak).
    Balogun AO; Lasode OA; McDonald AG
    Bioresour Technol; 2014 Mar; 156():57-62. PubMed ID: 24486938
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolved gas analysis and slow pyrolysis mechanism of bamboo by thermogravimetric analysis, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry.
    Wu X; Ba Y; Wang X; Niu M; Fang K
    Bioresour Technol; 2018 Oct; 266():407-412. PubMed ID: 29982064
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Co-combustion behavior of dyeing sludge and rice husk by using TG-MS: Thermal conversion, gas evolution, and kinetic analyses.
    Wang T; Fu T; Chen K; Cheng R; Chen S; Liu J; Mei M; Li J; Xue Y
    Bioresour Technol; 2020 Sep; 311():123527. PubMed ID: 32422554
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermal and thermo-oxidative degradation kinetics and characteristics of poly (lactic acid) and its composites.
    Lv S; Zhang Y; Tan H
    Waste Manag; 2019 Mar; 87():335-344. PubMed ID: 31109534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of Montmorillonite clay on pyrolysis of paper mill waste.
    Kumar M; Upadhyay SN; Mishra PK
    Bioresour Technol; 2020 Jul; 307():123161. PubMed ID: 32217435
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermal behaviour and kinetic study of the olive oil production chain residues and their mixtures during co-combustion.
    Buratti C; Mousavi S; Barbanera M; Lascaro E; Cotana F; Bufacchi M
    Bioresour Technol; 2016 Aug; 214():266-275. PubMed ID: 27136614
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal behavior characteristics of Adhesive residue.
    Jiang X; Li C; Chi Y; Yan J
    Waste Manag; 2009 Nov; 29(11):2824-9. PubMed ID: 19660928
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres.
    Chandrasekaran SR; Hopke PK
    Bioresour Technol; 2012 Dec; 125():52-8. PubMed ID: 23026316
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Catalytic pyrolysis of Chlorella vulgaris: Kinetic and thermodynamic analysis.
    Fong MJB; Loy ACM; Chin BLF; Lam MK; Yusup S; Jawad ZA
    Bioresour Technol; 2019 Oct; 289():121689. PubMed ID: 31252316
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermal decomposition and kinetics studies on 1,4-dinitropiperazine (DNP).
    Yan QL; Li XJ; Wang H; Nie LH; Zhang ZY; Gao HX
    J Hazard Mater; 2008 Mar; 151(2-3):515-21. PubMed ID: 17629621
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interaction and kinetic analysis for coal and biomass co-gasification by TG-FTIR.
    Xu C; Hu S; Xiang J; Zhang L; Sun L; Shuai C; Chen Q; He L; Edreis EM
    Bioresour Technol; 2014 Feb; 154():313-21. PubMed ID: 24412857
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combustion characteristics and kinetic analysis of oil sludge with CaO additive.
    Liu C; Gong Z; Zhang H; Wang Z; Chu Z; Liu L; Li X; Guo Y; Zhang J; Li G; Zhang L; Wang H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(9):937-945. PubMed ID: 34347579
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermogravimetric-Fourier transform infrared spectrometric analysis of CO2 gasification of reed (Phragmites australis) kraft black liquor.
    Yang Q; Yin X; Wu C; Wu S; Guo D
    Bioresour Technol; 2012 Mar; 107():512-6. PubMed ID: 22209407
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis.
    Liu G; Song H; Wu J
    Waste Manag; 2015 Jul; 41():128-33. PubMed ID: 25892437
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetic modeling study on the combustion treatment of cathode from spent lithium-ion batteries.
    Yao Z; Yu S; Su W; Wu D; Wu W; Tang J
    Waste Manag Res; 2020 Jan; 38(1):100-106. PubMed ID: 31603400
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermochemical conversion pathways of Kappaphycus alvarezii granules through study of kinetic models.
    Das P; Mondal D; Maiti S
    Bioresour Technol; 2017 Jun; 234():233-242. PubMed ID: 28319772
    [TBL] [Abstract][Full Text] [Related]  

  • 58. IR and kinetic study of sewage sludge combustion at different oxygen concentrations.
    Cheng X; Zhang M; Wang Z; Xu G; Ma C
    Waste Manag; 2018 Apr; 74():279-287. PubMed ID: 29317161
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: Thermal conversion characteristics, kinetics, and thermodynamics.
    Xie W; Wen S; Liu J; Xie W; Kuo J; Lu X; Sun S; Chang K; Buyukada M; Evrendilek F
    Bioresour Technol; 2018 May; 255():88-95. PubMed ID: 29414178
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis.
    Xu Y; Chen B
    Bioresour Technol; 2013 Oct; 146():485-493. PubMed ID: 23958681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.