These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 29982259)

  • 1. Iron Homeostasis Pathways as Therapeutic Targets in Acute Kidney Injury.
    Swaminathan S
    Nephron; 2018; 140(2):156-159. PubMed ID: 29982259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron Homeostasis in Healthy Kidney and its Role in Acute Kidney Injury.
    Scindia PhD Y; Leeds Md J; Swaminathan Md S
    Semin Nephrol; 2019 Jan; 39(1):76-84. PubMed ID: 30606409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Iron Homeostasis in Acute Kidney Injury.
    Walker VJ; Agarwal A
    Semin Nephrol; 2016 Jan; 36(1):62-70. PubMed ID: 27085736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepcidin Mitigates Renal Ischemia-Reperfusion Injury by Modulating Systemic Iron Homeostasis.
    Scindia Y; Dey P; Thirunagari A; Liping H; Rosin DL; Floris M; Okusa MD; Swaminathan S
    J Am Soc Nephrol; 2015 Nov; 26(11):2800-14. PubMed ID: 25788528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological functions of ferroportin in the regulation of renal iron recycling and ischemic acute kidney injury.
    Wang X; Zheng X; Zhang J; Zhao S; Wang Z; Wang F; Shang W; Barasch J; Qiu A
    Am J Physiol Renal Physiol; 2018 Oct; 315(4):F1042-F1057. PubMed ID: 29923765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron, ferroptosis, and new insights for prevention in acute kidney injury.
    Borawski B; Malyszko J
    Adv Med Sci; 2020 Sep; 65(2):361-370. PubMed ID: 32592957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Role of Ferroptosis in Acute Kidney Injury.
    Hu Z; Zhang H; Yang SK; Wu X; He D; Cao K; Zhang W
    Oxid Med Cell Longev; 2019; 2019():8010614. PubMed ID: 31781351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the Molecular Mechanisms of Renal Hepcidin Induction and Protection upon Hemoglobin-Induced Acute Kidney Injury.
    Diepeveen LE; Stegemann G; Wiegerinck ET; Roelofs R; Naber M; Lóreal O; Smeets B; Thévenod F; Swinkels DW; van Swelm RPL
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmenter of liver regeneration protects the kidney from ischaemia-reperfusion injury in ferroptosis.
    Huang LL; Liao XH; Sun H; Jiang X; Liu Q; Zhang L
    J Cell Mol Med; 2019 Jun; 23(6):4153-4164. PubMed ID: 30993878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early intraoperative iron-binding proteins are associated with acute kidney injury after cardiac surgery.
    Choi N; Whitlock R; Klassen J; Zappitelli M; Arora RC; Rigatto C; Ho J
    J Thorac Cardiovasc Surg; 2019 Jan; 157(1):287-297.e2. PubMed ID: 30195593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic potential of hepcidin - the master regulator of iron metabolism.
    Vyoral D; Jiri Petrak
    Pharmacol Res; 2017 Jan; 115():242-254. PubMed ID: 27867027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepcidin Alleviates LPS-Induced ARDS by Regulating the Ferritin-Mediated Suppression of Ferroptosis.
    Jiao Y; Yong C; Zhang R; Qi D; Wang D
    Shock; 2022 Jun; 57(6):274-281. PubMed ID: 35580554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal-specific loss of ferroportin disrupts iron homeostasis and attenuates recovery from acute kidney injury.
    Soofi A; Li V; Beamish JA; Abdrabh S; Hamad M; Das NK; Shah YM; Dressler GR
    Am J Physiol Renal Physiol; 2024 Feb; 326(2):F178-F188. PubMed ID: 37994409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urinary hepcidin: an inverse biomarker of acute kidney injury after cardiopulmonary bypass?
    Prowle JR; Westerman M; Bellomo R
    Curr Opin Crit Care; 2010 Dec; 16(6):540-4. PubMed ID: 20736824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepcidin and its therapeutic potential in neurodegenerative disorders.
    Qian ZM; Ke Y
    Med Res Rev; 2020 Mar; 40(2):633-653. PubMed ID: 31471929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal Handling of Circulating and Renal-Synthesized Hepcidin and Its Protective Effects against Hemoglobin-Mediated Kidney Injury.
    van Swelm RP; Wetzels JF; Verweij VG; Laarakkers CM; Pertijs JC; van der Wijst J; Thévenod F; Masereeuw R; Swinkels DW
    J Am Soc Nephrol; 2016 Sep; 27(9):2720-32. PubMed ID: 26825531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control.
    Naidu SAG; Clemens RA; Naidu AS
    J Diet Suppl; 2023; 20(2):312-371. PubMed ID: 35603834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron Homeostasis and Ferritin in Sepsis-Associated Kidney Injury.
    McCullough K; Bolisetty S
    Nephron; 2020; 144(12):616-620. PubMed ID: 32694248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquiritigenin, an Active Ingredient of Liquorice, Alleviates Acute Kidney Injury by VKORC1-Mediated Ferroptosis Inhibition.
    Guo RZ; Li J; Pan SK; Hu MY; Lv LX; Feng Q; Qiao YJ; Duan JY; Liu DW; Liu ZS
    Am J Chin Med; 2024; 52(5):1507-1526. PubMed ID: 39192677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferroptosis as a target for protection against cardiomyopathy.
    Fang X; Wang H; Han D; Xie E; Yang X; Wei J; Gu S; Gao F; Zhu N; Yin X; Cheng Q; Zhang P; Dai W; Chen J; Yang F; Yang HT; Linkermann A; Gu W; Min J; Wang F
    Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2672-2680. PubMed ID: 30692261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.