These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 29982337)

  • 41. Assay for Transposase-Accessible Chromatin Using Sequencing (ATAC-seq) Data Analysis.
    Miskimen KLS; Chan ER; Haines JL
    Curr Protoc Hum Genet; 2017 Jan; 92():20.4.1-20.4.13. PubMed ID: 28075484
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protocol for assaying chromatin accessibility using ATAC-seq in plants.
    Wang FX; Shang GD; Wu LY; Mai YX; Gao J; Xu ZG; Wang JW
    STAR Protoc; 2021 Mar; 2(1):100289. PubMed ID: 33532736
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome-Scale Analysis of Cell-Specific Regulatory Codes Using Nuclear Enzymes.
    Baek S; Sung MH
    Methods Mol Biol; 2016; 1418():225-40. PubMed ID: 27008018
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Layer-specific chromatin accessibility landscapes reveal regulatory networks in adult mouse visual cortex.
    Gray LT; Yao Z; Nguyen TN; Kim TK; Zeng H; Tasic B
    Elife; 2017 Jan; 6():. PubMed ID: 28112643
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-Wide Mapping of Active Regulatory Elements Using ATAC-seq.
    Marinov GK; Shipony Z; Kundaje A; Greenleaf WJ
    Methods Mol Biol; 2023; 2611():3-19. PubMed ID: 36807060
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prenet: Predictive network from ATAC-SEQ data.
    Salehin N; Tam PPL; Osteil P
    J Bioinform Comput Biol; 2020 Feb; 18(1):2040003. PubMed ID: 32336246
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Visualization of the landscape of the read alignment shape of ATAC-seq data using Hellinger distance metric.
    Cheng JH; Zheng C; Yamada R; Okada D
    Genes Cells; 2024 Jan; 29(1):5-16. PubMed ID: 37989133
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder.
    Wang Z; Zhang Y; Yu Y; Zhang J; Liu Y; Zou Q
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Changes in chromatin accessibility between Arabidopsis stem cells and mesophyll cells illuminate cell type-specific transcription factor networks.
    Sijacic P; Bajic M; McKinney EC; Meagher RB; Deal RB
    Plant J; 2018 Apr; 94(2):215-231. PubMed ID: 29513366
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of Open Chromatin Regions in Plant Genomes Using ATAC-Seq.
    Bajic M; Maher KA; Deal RB
    Methods Mol Biol; 2018; 1675():183-201. PubMed ID: 29052193
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ATAC-seq reveals alterations in open chromatin in pancreatic islets from subjects with type 2 diabetes.
    Bysani M; Agren R; Davegårdh C; Volkov P; Rönn T; Unneberg P; Bacos K; Ling C
    Sci Rep; 2019 May; 9(1):7785. PubMed ID: 31123324
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MMGraph: a multiple motif predictor based on graph neural network and coexisting probability for ATAC-seq data.
    Zhang S; Yang L; Wu X; Sheng N; Fu Y; Ma A; Wang Y
    Bioinformatics; 2022 Sep; 38(19):4636-4638. PubMed ID: 35997564
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ATAC-seq with unique molecular identifiers improves quantification and footprinting.
    Zhu T; Liao K; Zhou R; Xia C; Xie W
    Commun Biol; 2020 Nov; 3(1):675. PubMed ID: 33188264
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ALTRE: workflow for defining ALTered Regulatory Elements using chromatin accessibility data.
    Baskin E; Farouni R; Mathé EA
    Bioinformatics; 2017 Mar; 33(5):740-742. PubMed ID: 28011773
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ATAC2GRN: optimized ATAC-seq and DNase1-seq pipelines for rapid and accurate genome regulatory network inference.
    Pranzatelli TJF; Michael DG; Chiorini JA
    BMC Genomics; 2018 Jul; 19(1):563. PubMed ID: 30064353
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Landscape of Accessible Chromatin during Yak Adipocyte Differentiation.
    Zhang Z; Zhang Y; Bao Q; Gu Y; Liang C; Chu M; Guo X; Bao P; Yan P
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077381
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum.
    Ruiz JL; Tena JJ; Bancells C; Cortés A; Gómez-Skarmeta JL; Gómez-Díaz E
    Nucleic Acids Res; 2018 Oct; 46(18):9414-9431. PubMed ID: 30016465
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell type-specific chromatin accessibility analysis in the mouse and human brain.
    Rocks D; Jaric I; Tesfa L; Greally JM; Suzuki M; Kundakovic M
    Epigenetics; 2022; 17(2):202-219. PubMed ID: 33775205
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chromatin Accessibility Profiling and Data Analysis Using ATAC-seq in
    Reeves GA; Singh PP; Brunet A
    Cold Spring Harb Protoc; 2024 Mar; 2024(3):107747. PubMed ID: 37100469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Integrating ATAC-seq and RNA-seq Reveals the Dynamics of Chromatin Accessibility and Gene Expression in Apple Response to Drought.
    Wang S; He J; Deng M; Wang C; Wang R; Yan J; Luo M; Ma F; Guan Q; Xu J
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.