BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29982392)

  • 1. LigVoxel: inpainting binding pockets using 3D-convolutional neural networks.
    Skalic M; Varela-Rial A; Jiménez J; Martínez-Rosell G; De Fabritiis G
    Bioinformatics; 2019 Jan; 35(2):243-250. PubMed ID: 29982392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K
    Jiménez J; Škalič M; Martínez-Rosell G; De Fabritiis G
    J Chem Inf Model; 2018 Feb; 58(2):287-296. PubMed ID: 29309725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PlayMolecule BindScope: large scale CNN-based virtual screening on the web.
    Skalic M; Martínez-Rosell G; Jiménez J; De Fabritiis G
    Bioinformatics; 2019 Apr; 35(7):1237-1238. PubMed ID: 30169549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph Convolutional Neural Networks for Predicting Drug-Target Interactions.
    Torng W; Altman RB
    J Chem Inf Model; 2019 Oct; 59(10):4131-4149. PubMed ID: 31580672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AutoSite: an automated approach for pseudo-ligands prediction-from ligand-binding sites identification to predicting key ligand atoms.
    Ravindranath PA; Sanner MF
    Bioinformatics; 2016 Oct; 32(20):3142-3149. PubMed ID: 27354702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepSite: protein-binding site predictor using 3D-convolutional neural networks.
    Jiménez J; Doerr S; Martínez-Rosell G; Rose AS; De Fabritiis G
    Bioinformatics; 2017 Oct; 33(19):3036-3042. PubMed ID: 28575181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction.
    Hoffmann B; Zaslavskiy M; Vert JP; Stoven V
    BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving detection of protein-ligand binding sites with 3D segmentation.
    Stepniewska-Dziubinska MM; Zielenkiewicz P; Siedlecki P
    Sci Rep; 2020 Mar; 10(1):5035. PubMed ID: 32193447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BionoiNet: ligand-binding site classification with off-the-shelf deep neural network.
    Shi W; Lemoine JM; Shawky AA; Singha M; Pu L; Yang S; Ramanujam J; Brylinski M
    Bioinformatics; 2020 May; 36(10):3077-3083. PubMed ID: 32053156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Development and validation of programs for ligand-binding-pocket search].
    Oda A
    Yakugaku Zasshi; 2011; 131(10):1429-35. PubMed ID: 21963969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bionoi: A Voronoi Diagram-Based Representation of Ligand-Binding Sites in Proteins for Machine Learning Applications.
    Feinstein J; Shi W; Ramanujam J; Brylinski M
    Methods Mol Biol; 2021; 2266():299-312. PubMed ID: 33759134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pocket to concavity: a tool for the refinement of protein-ligand binding site shape from alpha spheres.
    Kudo G; Hirao T; Yoshino R; Shigeta Y; Hirokawa T
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37086438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spatial-temporal gated attention module for molecular property prediction based on molecular geometry.
    Li C; Wang J; Niu Z; Yao J; Zeng X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins.
    Hussein HA; Borrel A; Geneix C; Petitjean M; Regad L; Camproux AC
    Nucleic Acids Res; 2015 Jul; 43(W1):W436-42. PubMed ID: 25956651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network.
    Pu L; Govindaraj RG; Lemoine JM; Wu HC; Brylinski M
    PLoS Comput Biol; 2019 Feb; 15(2):e1006718. PubMed ID: 30716081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets.
    Ashford P; Moss DS; Alex A; Yeap SK; Povia A; Nobeli I; Williams MA
    BMC Bioinformatics; 2012 Mar; 13():39. PubMed ID: 22417279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction.
    Stepniewska-Dziubinska MM; Zielenkiewicz P; Siedlecki P
    Bioinformatics; 2018 Nov; 34(21):3666-3674. PubMed ID: 29757353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graph-Based Clustering of Predicted Ligand-Binding Pockets on Protein Surfaces.
    Degac J; Winter U; Helms V
    J Chem Inf Model; 2015 Sep; 55(9):1944-52. PubMed ID: 26325445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.