These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 29982548)
1. Effect of UV irradiation on Sulfolobus acidocaldarius and involvement of the general transcription factor TFB3 in the early UV response. Schult F; Le TN; Albersmeier A; Rauch B; Blumenkamp P; van der Does C; Goesmann A; Kalinowski J; Albers SV; Siebers B Nucleic Acids Res; 2018 Aug; 46(14):7179-7192. PubMed ID: 29982548 [TBL] [Abstract][Full Text] [Related]
2. Participation of UV-regulated Genes in the Response to Helix-distorting DNA Damage in the Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius. Suzuki S; Kurosawa N Microbes Environ; 2019 Dec; 34(4):363-373. PubMed ID: 31548441 [TBL] [Abstract][Full Text] [Related]
3. Responses of hyperthermophilic crenarchaea to UV irradiation. Götz D; Paytubi S; Munro S; Lundgren M; Bernander R; White MF Genome Biol; 2007; 8(10):R220. PubMed ID: 17931420 [TBL] [Abstract][Full Text] [Related]
4. The crenarchaeal DNA damage-inducible transcription factor B paralogue TFB3 is a general activator of transcription. Paytubi S; White MF Mol Microbiol; 2009 Jun; 72(6):1487-99. PubMed ID: 19460096 [TBL] [Abstract][Full Text] [Related]
5. A conserved hexanucleotide motif is important in UV-inducible promoters in Sulfolobus acidocaldarius. Le TN; Wagner A; Albers SV Microbiology (Reading); 2017 May; 163(5):778-788. PubMed ID: 28463103 [TBL] [Abstract][Full Text] [Related]
6. A transcriptional factor B paralog functions as an activator to DNA damage-responsive expression in archaea. Feng X; Sun M; Han W; Liang YX; She Q Nucleic Acids Res; 2018 Aug; 46(14):7085-7096. PubMed ID: 29618058 [TBL] [Abstract][Full Text] [Related]
7. Molecular analysis of the UV-inducible pili operon from Sulfolobus acidocaldarius. van Wolferen M; Ajon M; Driessen AJ; Albers SV Microbiologyopen; 2013 Dec; 2(6):928-37. PubMed ID: 24106028 [TBL] [Abstract][Full Text] [Related]
8. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Fröls S; Ajon M; Wagner M; Teichmann D; Zolghadr B; Folea M; Boekema EJ; Driessen AJ; Schleper C; Albers SV Mol Microbiol; 2008 Nov; 70(4):938-52. PubMed ID: 18990182 [TBL] [Abstract][Full Text] [Related]
9. Sulfolobus islandicus Employs Orc1-2-Mediated DNA Damage Response in Defense against Infection by SSV2. Wang S; She Q; Huang L J Virol; 2022 Dec; 96(24):e0143822. PubMed ID: 36448807 [TBL] [Abstract][Full Text] [Related]
11. UV stimulation of chromosomal marker exchange in Sulfolobus acidocaldarius: implications for DNA repair, conjugation and homologous recombination at extremely high temperatures. Schmidt KJ; Beck KE; Grogan DW Genetics; 1999 Aug; 152(4):1407-15. PubMed ID: 10430571 [TBL] [Abstract][Full Text] [Related]
12. Species-Specific Recognition of van Wolferen M; Shajahan A; Heinrich K; Brenzinger S; Black IM; Wagner A; Briegel A; Azadi P; Albers SV mBio; 2020 Mar; 11(2):. PubMed ID: 32156822 [TBL] [Abstract][Full Text] [Related]
13. Endonucleases responsible for DNA repair of helix-distorting DNA lesions in the thermophilic crenarchaeon Sulfolobus acidocaldarius in vivo. Suzuki S; Kurosawa N Extremophiles; 2019 Sep; 23(5):613-624. PubMed ID: 31377865 [TBL] [Abstract][Full Text] [Related]
14. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway. Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511 [No Abstract] [Full Text] [Related]
15. The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius. Quaiser A; Constantinesco F; White MF; Forterre P; Elie C BMC Mol Biol; 2008 Feb; 9():25. PubMed ID: 18294364 [TBL] [Abstract][Full Text] [Related]
16. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. Chen L; Brügger K; Skovgaard M; Redder P; She Q; Torarinsson E; Greve B; Awayez M; Zibat A; Klenk HP; Garrett RA J Bacteriol; 2005 Jul; 187(14):4992-9. PubMed ID: 15995215 [TBL] [Abstract][Full Text] [Related]
17. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius. Reimann J; Esser D; Orell A; Amman F; Pham TK; Noirel J; Lindås AC; Bernander R; Wright PC; Siebers B; Albers SV Mol Cell Proteomics; 2013 Dec; 12(12):3908-23. PubMed ID: 24078887 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional response to DNA damage in the archaeon Sulfolobus solfataricus. Salerno V; Napoli A; White MF; Rossi M; Ciaramella M Nucleic Acids Res; 2003 Nov; 31(21):6127-38. PubMed ID: 14576299 [TBL] [Abstract][Full Text] [Related]
19. Alterations of the transcriptome of Sulfolobus acidocaldarius by exoribonuclease aCPSF2. Märtens B; Amman F; Manoharadas S; Zeichen L; Orell A; Albers SV; Hofacker I; Bläsi U PLoS One; 2013; 8(10):e76569. PubMed ID: 24116119 [TBL] [Abstract][Full Text] [Related]
20. The archaeal Ced system imports DNA. van Wolferen M; Wagner A; van der Does C; Albers SV Proc Natl Acad Sci U S A; 2016 Mar; 113(9):2496-501. PubMed ID: 26884154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]