These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 29982548)
21. Purification and characterization of Sa-lrp, a DNA-binding protein from the extreme thermoacidophilic archaeon Sulfolobus acidocaldarius homologous to the bacterial global transcriptional regulator Lrp. Enoru-Eta J; Gigot D; Thia-Toong TL; Glansdorff N; Charlier D J Bacteriol; 2000 Jul; 182(13):3661-72. PubMed ID: 10850980 [TBL] [Abstract][Full Text] [Related]
22. A CRISPR-associated factor Csa3a regulates DNA damage repair in Crenarchaeon Sulfolobus islandicus. Liu Z; Sun M; Liu J; Liu T; Ye Q; Li Y; Peng N Nucleic Acids Res; 2020 Sep; 48(17):9681-9693. PubMed ID: 32833023 [TBL] [Abstract][Full Text] [Related]
23. Structure and interactions of the archaeal motility repression module ArnA-ArnB that modulates archaellum gene expression in Hoffmann L; Anders K; Bischof LF; Ye X; Reimann J; Khadouma S; Pham TK; van der Does C; Wright PC; Essen LO; Albers SV J Biol Chem; 2019 May; 294(18):7460-7471. PubMed ID: 30902813 [TBL] [Abstract][Full Text] [Related]
24. The in vitro activity of a Rad55 homologue from Sulfolobus tokodaii, a candidate mediator in RadA-catalyzed homologous recombination. Sheng D; Zhu S; Wei T; Ni J; Shen Y Extremophiles; 2008 Jan; 12(1):147-57. PubMed ID: 17938853 [TBL] [Abstract][Full Text] [Related]
25. Chromatin Immunoprecipitation Assay in the Hyperthermoacidophilic Crenarchaeon, Sulfolobus acidocaldarius. Wang K; Lindås AC Methods Mol Biol; 2018; 1689():139-146. PubMed ID: 29027171 [TBL] [Abstract][Full Text] [Related]
26. [Cloning, expression and radiation inducibility of RadA from the hyperthermophilic archaeon Sulfolobus tokodaii]. Sheng D; Zhu S; Li M; Jiao J; Ni J; Shen Y Wei Sheng Wu Xue Bao; 2008 Mar; 48(3):317-22. PubMed ID: 18479057 [TBL] [Abstract][Full Text] [Related]
27. Disruption of the gene encoding restriction endonuclease SuaI and development of a host-vector system for the thermoacidophilic archaeon Sulfolobus acidocaldarius. Suzuki S; Kurosawa N Extremophiles; 2016 Mar; 20(2):139-48. PubMed ID: 26791382 [TBL] [Abstract][Full Text] [Related]
28. Expanded target and cofactor repertoire for the transcriptional activator LysM from Sulfolobus. Song N; Nguyen Duc T; van Oeffelen L; Muyldermans S; Peeters E; Charlier D Nucleic Acids Res; 2013 Mar; 41(5):2932-49. PubMed ID: 23355617 [TBL] [Abstract][Full Text] [Related]
29. Sa-Lrp from Sulfolobus acidocaldarius is a versatile, glutamine-responsive, and architectural transcriptional regulator. Vassart A; Van Wolferen M; Orell A; Hong Y; Peeters E; Albers SV; Charlier D Microbiologyopen; 2013 Feb; 2(1):75-93. PubMed ID: 23255531 [TBL] [Abstract][Full Text] [Related]
30. Identification and characterization of MalA in the maltose/maltodextrin operon of Sulfolobus acidocaldarius DSM639. Choi KH; Hwang S; Cha J J Bacteriol; 2013 Apr; 195(8):1789-99. PubMed ID: 23396915 [TBL] [Abstract][Full Text] [Related]
31. Control of archaellation in Sulfolobus acidocaldarius: unravelling of the regulation of surface structure biosynthesis in Archaea begins. Jarrell KF Mol Microbiol; 2012 Oct; 86(1):1-5. PubMed ID: 22857613 [TBL] [Abstract][Full Text] [Related]
32. An Orc1/Cdc6 ortholog functions as a key regulator in the DNA damage response in Archaea. Sun M; Feng X; Liu Z; Han W; Liang YX; She Q Nucleic Acids Res; 2018 Jul; 46(13):6697-6711. PubMed ID: 29878182 [TBL] [Abstract][Full Text] [Related]
33. Lesion-Induced Mutation in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius and Its Avoidance by the Y-Family DNA Polymerase Dbh. Sakofsky CJ; Grogan DW Genetics; 2015 Oct; 201(2):513-23. PubMed ID: 26224736 [TBL] [Abstract][Full Text] [Related]
34. Exposure to 1-Butanol Exemplifies the Response of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius to Solvent Stress. Benninghoff JC; Kuschmierz L; Zhou X; Albersmeier A; Pham TK; Busche T; Wright PC; Kalinowski J; Makarova KS; Bräsen C; Flemming HC; Wingender J; Siebers B Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741627 [No Abstract] [Full Text] [Related]
35. Biochemical characterization of a recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius. Pennacchio A; Giordano A; Pucci B; Rossi M; Raia CA Extremophiles; 2010 Mar; 14(2):193-204. PubMed ID: 20049620 [TBL] [Abstract][Full Text] [Related]
36. Salt Stress Response of Sulfolobus acidocaldarius Involves Complex Trehalose Metabolism Utilizing a Novel Trehalose-6-Phosphate Synthase (TPS)/Trehalose-6-Phosphate Phosphatase (TPP) Pathway. Stracke C; Meyer BH; Hagemann A; Jo E; Lee A; Albers SV; Cha J; Bräsen C; Siebers B Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33008820 [TBL] [Abstract][Full Text] [Related]
37. Swapping genes to survive - a new role for archaeal type IV pili. Allers T Mol Microbiol; 2011 Nov; 82(4):789-91. PubMed ID: 21992544 [TBL] [Abstract][Full Text] [Related]
38. The one-component system ArnR: a membrane-bound activator of the crenarchaeal archaellum. Lassak K; Peeters E; Wróbel S; Albers SV Mol Microbiol; 2013 Apr; 88(1):125-39. PubMed ID: 23461567 [TBL] [Abstract][Full Text] [Related]
39. Loss of genetic accuracy in mutants of the thermoacidophile Sulfolobus acidocaldarius. Bell GD; Grogan DW Archaea; 2002 Mar; 1(1):45-52. PubMed ID: 15803658 [TBL] [Abstract][Full Text] [Related]
40. DNA Processing Proteins Involved in the UV-Induced Stress Response of Sulfolobales. van Wolferen M; Ma X; Albers SV J Bacteriol; 2015 Sep; 197(18):2941-51. PubMed ID: 26148716 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]