BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29982623)

  • 1. Towards the synthetic design of camelina oil enriched in tailored acetyl-triacylglycerols with medium-chain fatty acids.
    Bansal S; Kim HJ; Na G; Hamilton ME; Cahoon EB; Lu C; Durrett TP
    J Exp Bot; 2018 Aug; 69(18):4395-4402. PubMed ID: 29982623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value.
    Liu J; Rice A; McGlew K; Shaw V; Park H; Clemente T; Pollard M; Ohlrogge J; Durrett TP
    Plant Biotechnol J; 2015 Aug; 13(6):858-65. PubMed ID: 25756355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of a high-activity diacylglycerol acetyltransferase results in enhanced synthesis of acetyl-TAG in camelina seed oil.
    Alkotami L; Kornacki C; Campbell S; McIntosh G; Wilson C; Tran TNT; Durrett TP
    Plant J; 2021 May; 106(4):953-964. PubMed ID: 33619818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.
    Hu Z; Wu Q; Dalal J; Vasani N; Lopez HO; Sederoff HW; Qu R
    PLoS One; 2017; 12(2):e0172296. PubMed ID: 28212406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil.
    Yu XH; Cahoon RE; Horn PJ; Shi H; Prakash RR; Cai Y; Hearney M; Chapman KD; Cahoon EB; Schwender J; Shanklin J
    Plant Biotechnol J; 2018 Apr; 16(4):926-938. PubMed ID: 28929610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Specialized Diacylglycerol Acyltransferase Contributes to the Extreme Medium-Chain Fatty Acid Content of
    Iskandarov U; Silva JE; Kim HJ; Andersson M; Cahoon RE; Mockaitis K; Cahoon EB
    Plant Physiol; 2017 May; 174(1):97-109. PubMed ID: 28325847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds.
    Durrett TP; McClosky DD; Tumaney AW; Elzinga DA; Ohlrogge J; Pollard M
    Proc Natl Acad Sci U S A; 2010 May; 107(20):9464-9. PubMed ID: 20439724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids.
    Bansal S; Durrett TP
    Biochimie; 2016 Jan; 120():9-16. PubMed ID: 26107412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of a gene encoding a 1,2-diacylglycerol-sn-acetyl-CoA acetyltransferase from developing seeds of Euonymus alatus.
    Milcamps A; Tumaney AW; Paddock T; Pan DA; Ohlrogge J; Pollard M
    J Biol Chem; 2005 Feb; 280(7):5370-7. PubMed ID: 15579902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review: Metabolic engineering of unusual lipids in the synthetic biology era.
    Aznar-Moreno JA; Durrett TP
    Plant Sci; 2017 Oct; 263():126-131. PubMed ID: 28818368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of
    Tran TNT; Breuer RJ; Avanasi Narasimhan R; Parreiras LS; Zhang Y; Sato TK; Durrett TP
    Biotechnol Biofuels; 2017; 10():69. PubMed ID: 28331545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds.
    Kim HJ; Silva JE; Vu HS; Mockaitis K; Nam JW; Cahoon EB
    J Exp Bot; 2015 Jul; 66(14):4251-65. PubMed ID: 25969557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining the extreme substrate specificity of
    Bansal S; Durrett TP
    Biosci Rep; 2016 Dec; 36(6):. PubMed ID: 27688773
    [No Abstract]   [Full Text] [Related]  

  • 14. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa.
    Snapp AR; Kang J; Qi X; Lu C
    Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reconfigured Kennedy pathway which promotes efficient accumulation of medium-chain fatty acids in leaf oils.
    Reynolds KB; Taylor MC; Cullerne DP; Blanchard CL; Wood CC; Singh SP; Petrie JR
    Plant Biotechnol J; 2017 Nov; 15(11):1397-1408. PubMed ID: 28301719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds.
    Nguyen HT; Park H; Koster KL; Cahoon RE; Nguyen HT; Shanklin J; Clemente TE; Cahoon EB
    Plant Biotechnol J; 2015 Jan; 13(1):38-50. PubMed ID: 25065607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression.
    Chhikara S; Abdullah HM; Akbari P; Schnell D; Dhankher OP
    Plant Biotechnol J; 2018 May; 16(5):1034-1045. PubMed ID: 28975735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of C6-C14 Medium-Chain Fatty Acids in Seeds and Leaves via Overexpression of Single Hotdog-Fold Acyl-Lipid Thioesterases.
    Kalinger RS; Williams D; Ahmadi Pirshahid A; Pulsifer IP; Rowland O
    Lipids; 2021 May; 56(3):327-344. PubMed ID: 33547664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two Acyltransferases Contribute Differently to Linolenic Acid Levels in Seed Oil.
    Marmon S; Sturtevant D; Herrfurth C; Chapman K; Stymne S; Feussner I
    Plant Physiol; 2017 Apr; 173(4):2081-2095. PubMed ID: 28235891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of a Lychee
    Yu XH; Cai Y; Chai J; Schwender J; Shanklin J
    Plant Physiol; 2019 Jul; 180(3):1351-1361. PubMed ID: 31123096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.