These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29982623)

  • 41. Comparative transcriptome and metabolome analysis suggests bottlenecks that limit seed and oil yields in transgenic
    Abdullah HM; Chhikara S; Akbari P; Schnell DJ; Pareek A; Dhankher OP
    Biotechnol Biofuels; 2018; 11():335. PubMed ID: 30574188
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Medium-chain triglyceride production in Nannochloropsis via a fatty acid chain length discriminating mechanism.
    Xin Y; Wang Q; Shen C; Hu C; Shi X; Lv N; Du X; Xu G; Xu J
    Plant Physiol; 2022 Oct; 190(3):1658-1672. PubMed ID: 36040196
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic Engineering a Model Oilseed
    Yuan L; Li R
    Front Plant Sci; 2020; 11():11. PubMed ID: 32117362
    [No Abstract]   [Full Text] [Related]  

  • 44. Proteome rebalancing in transgenic Camelina occurs within the enlarged proteome induced by β-carotene accumulation and storage protein suppression.
    Schmidt MA; Pendarvis K
    Transgenic Res; 2017 Apr; 26(2):171-186. PubMed ID: 27771868
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative profiling and pattern analysis of triacylglycerol species in Arabidopsis seeds by electrospray ionization mass spectrometry.
    Li M; Baughman E; Roth MR; Han X; Welti R; Wang X
    Plant J; 2014 Jan; 77(1):160-72. PubMed ID: 24164626
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Camelina sativa, an oilseed at the nexus between model system and commercial crop.
    Malik MR; Tang J; Sharma N; Burkitt C; Ji Y; Mykytyshyn M; Bohmert-Tatarev K; Peoples O; Snell KD
    Plant Cell Rep; 2018 Oct; 37(10):1367-1381. PubMed ID: 29881973
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene.
    Zou J; Katavic V; Giblin EM; Barton DL; MacKenzie SL; Keller WA; Hu X; Taylor DC
    Plant Cell; 1997 Jun; 9(6):909-23. PubMed ID: 9212466
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in Physaria fendleri.
    Horn PJ; Liu J; Cocuron JC; McGlew K; Thrower NA; Larson M; Lu C; Alonso AP; Ohlrogge J
    Plant J; 2016 May; 86(4):322-48. PubMed ID: 26991237
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lipid analysis of developing Camelina sativa seeds and cultured embryos.
    Pollard M; Martin TM; Shachar-Hill Y
    Phytochemistry; 2015 Oct; 118():23-32. PubMed ID: 26262674
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.
    Zhu LH; Krens F; Smith MA; Li X; Qi W; van Loo EN; Iven T; Feussner I; Nazarenus TJ; Huai D; Taylor DC; Zhou XR; Green AG; Shockey J; Klasson KT; Mullen RT; Huang B; Dyer JM; Cahoon EB
    Sci Rep; 2016 Feb; 6():22181. PubMed ID: 26916792
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux.
    Cahoon EB; Shockey JM; Dietrich CR; Gidda SK; Mullen RT; Dyer JM
    Curr Opin Plant Biol; 2007 Jun; 10(3):236-44. PubMed ID: 17434788
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The coexpression of two desaturases provides an optimized reduction of saturates in camelina oil.
    Bengtsson JD; Wallis JG; Bai S; Browse J
    Plant Biotechnol J; 2023 Mar; 21(3):497-505. PubMed ID: 36382992
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Camelina sativa phosphatidylcholine:diacylglycerol cholinephosphotransferase-catalyzed interconversion does not discriminate between substrates.
    Demski K; Jeppson S; Stymne S; Lager I
    Lipids; 2021 Nov; 56(6):591-602. PubMed ID: 34463366
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of alpha-linolenic acid-rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects.
    Karvonen HM; Aro A; Tapola NS; Salminen I; Uusitupa MI; Sarkkinen ES
    Metabolism; 2002 Oct; 51(10):1253-60. PubMed ID: 12370843
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass.
    Zale J; Jung JH; Kim JY; Pathak B; Karan R; Liu H; Chen X; Wu H; Candreva J; Zhai Z; Shanklin J; Altpeter F
    Plant Biotechnol J; 2016 Feb; 14(2):661-9. PubMed ID: 26058948
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Overexpression of diacylglycerol acetyltransferase from Euonymus europaeus in Yarrowia lipolytica leads to the production of single-cell oil enriched with 3-acetyl-1,2-diacylglycerols.
    Gajdoš P; Hambalko J; Nicaud JM; Čertík M
    Yeast; 2020 Jan; 37(1):141-147. PubMed ID: 31509617
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alterations in allocation and composition of lipid classes in Euonymus fruits and seeds.
    Blehová A; Murín M; Nemeček P; Gajdoš P; Čertík M; Kraic J; Matušíková I
    Protoplasma; 2021 Jan; 258(1):169-178. PubMed ID: 33009648
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification and characterization of an efficient acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) gene from the microalga Chlorella ellipsoidea.
    Guo X; Fan C; Chen Y; Wang J; Yin W; Wang RR; Hu Z
    BMC Plant Biol; 2017 Feb; 17(1):48. PubMed ID: 28222675
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.
    Liang MH; Jiang JG
    Prog Lipid Res; 2013 Oct; 52(4):395-408. PubMed ID: 23685199
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Overexpression of patatin-related phospholipase AIIIδ altered plant growth and increased seed oil content in camelina.
    Li M; Wei F; Tawfall A; Tang M; Saettele A; Wang X
    Plant Biotechnol J; 2015 Aug; 13(6):766-78. PubMed ID: 25557877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.