BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

624 related articles for article (PubMed ID: 29982630)

  • 1. Glucosylceramide synthase inhibition with lucerastat lowers globotriaosylceramide and lysosome staining in cultured fibroblasts from Fabry patients with different mutation types.
    Welford RWD; Mühlemann A; Garzotti M; Rickert V; Groenen PMA; Morand O; Üçeyler N; Probst MR
    Hum Mol Genet; 2018 Oct; 27(19):3392-3403. PubMed ID: 29982630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study.
    Hughes DA; Nicholls K; Shankar SP; Sunder-Plassmann G; Koeller D; Nedd K; Vockley G; Hamazaki T; Lachmann R; Ohashi T; Olivotto I; Sakai N; Deegan P; Dimmock D; Eyskens F; Germain DP; Goker-Alpan O; Hachulla E; Jovanovic A; Lourenco CM; Narita I; Thomas M; Wilcox WR; Bichet DG; Schiffmann R; Ludington E; Viereck C; Kirk J; Yu J; Johnson F; Boudes P; Benjamin ER; Lockhart DJ; Barlow C; Skuban N; Castelli JP; Barth J; Feldt-Rasmussen U
    J Med Genet; 2017 Apr; 54(4):288-296. PubMed ID: 27834756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Migalastat HCl reduces globotriaosylsphingosine (lyso-Gb3) in Fabry transgenic mice and in the plasma of Fabry patients.
    Young-Gqamana B; Brignol N; Chang HH; Khanna R; Soska R; Fuller M; Sitaraman SA; Germain DP; Giugliani R; Hughes DA; Mehta A; Nicholls K; Boudes P; Lockhart DJ; Valenzano KJ; Benjamin ER
    PLoS One; 2013; 8(3):e57631. PubMed ID: 23472096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabry disease genotype, phenotype, and migalastat amenability: Insights from a national cohort.
    Nowak A; Huynh-Do U; Krayenbuehl PA; Beuschlein F; Schiffmann R; Barbey F
    J Inherit Metab Dis; 2020 Mar; 43(2):326-333. PubMed ID: 31449323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lucerastat, an Iminosugar for Substrate Reduction Therapy: Tolerability, Pharmacodynamics, and Pharmacokinetics in Patients With Fabry Disease on Enzyme Replacement.
    Guérard N; Oder D; Nordbeck P; Zwingelstein C; Morand O; Welford RWD; Dingemanse J; Wanner C
    Clin Pharmacol Ther; 2018 Apr; 103(4):703-711. PubMed ID: 28699267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of podocyte globotriaosylceramide content in adult male patients with Fabry disease with amenable
    Mauer M; Sokolovskiy A; Barth JA; Castelli JP; Williams HN; Benjamin ER; Najafian B
    J Med Genet; 2017 Nov; 54(11):781-786. PubMed ID: 28756410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaperone Therapy in Fabry Disease.
    Weidemann F; Jovanovic A; Herrmann K; Vardarli I
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Migalastat: A Review in Fabry Disease.
    McCafferty EH; Scott LJ
    Drugs; 2019 Apr; 79(5):543-554. PubMed ID: 30875019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy and safety of enzyme-replacement-therapy with agalsidase alfa in 36 treatment-naïve Fabry disease patients.
    Tsuboi K; Yamamoto H
    BMC Pharmacol Toxicol; 2017 Jun; 18(1):43. PubMed ID: 28592315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter-assay variability influences migalastat amenability assessments among Fabry disease variants.
    Oommen S; Zhou Y; Meiyappan M; Gurevich A; Qiu Y
    Mol Genet Metab; 2019 May; 127(1):74-85. PubMed ID: 31036492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of the pharmacologic chaperone migalastat in a subset of male patients with the classic phenotype of Fabry disease and migalastat-amenable variants: data from the phase 3 randomized, multicenter, double-blind clinical trial and extension study.
    Germain DP; Nicholls K; Giugliani R; Bichet DG; Hughes DA; Barisoni LM; Colvin RB; Jennette JC; Skuban N; Castelli JP; Benjamin E; Barth JA; Viereck C
    Genet Med; 2019 Sep; 21(9):1987-1997. PubMed ID: 30723321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy and safety of migalastat in a Japanese population: a subgroup analysis of the ATTRACT study.
    Narita I; Ohashi T; Sakai N; Hamazaki T; Skuban N; Castelli JP; Lagast H; Barth JA
    Clin Exp Nephrol; 2020 Feb; 24(2):157-166. PubMed ID: 31889231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenesis and Molecular Mechanisms of Anderson-Fabry Disease and Possible New Molecular Addressed Therapeutic Strategies.
    Tuttolomondo A; Simonetta I; Riolo R; Todaro F; Di Chiara T; Miceli S; Pinto A
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-Term Dose-Dependent Agalsidase Effects on Kidney Histology in Fabry Disease.
    Skrunes R; Tøndel C; Leh S; Larsen KK; Houge G; Davidsen ES; Hollak C; van Kuilenburg ABP; Vaz FM; Svarstad E
    Clin J Am Soc Nephrol; 2017 Sep; 12(9):1470-1479. PubMed ID: 28625968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agalsidase-β should be proposed as first line therapy in classic male Fabry patients with undetectable α-galactosidase A activity.
    Nowak A; Dormond O; Monzambani V; Huynh-Do U; Barbey F
    Mol Genet Metab; 2022; 137(1-2):173-178. PubMed ID: 36087505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the glucosylceramide synthase inhibitor lucerastat on cardiac repolarization: results from a thorough QT study in healthy subjects.
    Mueller MS; Sidharta PN; Voors-Pette C; Darpo B; Xue H; Dingemanse J
    Orphanet J Rare Dis; 2020 Oct; 15(1):303. PubMed ID: 33109218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosphingolipid depletion in fabry disease lymphoblasts with potent inhibitors of glucosylceramide synthase.
    Abe A; Arend LJ; Lee L; Lingwood C; Brady RO; Shayman JA
    Kidney Int; 2000 Feb; 57(2):446-54. PubMed ID: 10652021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat.
    Benjamin ER; Della Valle MC; Wu X; Katz E; Pruthi F; Bond S; Bronfin B; Williams H; Yu J; Bichet DG; Germain DP; Giugliani R; Hughes D; Schiffmann R; Wilcox WR; Desnick RJ; Kirk J; Barth J; Barlow C; Valenzano KJ; Castelli J; Lockhart DJ
    Genet Med; 2017 Apr; 19(4):430-438. PubMed ID: 27657681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of plasma lyso-Gb
    Bichet DG; Aerts JM; Auray-Blais C; Maruyama H; Mehta AB; Skuban N; Krusinska E; Schiffmann R
    Genet Med; 2021 Jan; 23(1):192-201. PubMed ID: 32994552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder.
    Yam GH; Zuber C; Roth J
    FASEB J; 2005 Jan; 19(1):12-8. PubMed ID: 15629890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.