These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 29982721)

  • 1. Improved sgRNA design in bacteria via genome-wide activity profiling.
    Guo J; Wang T; Guan C; Liu B; Luo C; Xie Z; Zhang C; Xing XH
    Nucleic Acids Res; 2018 Aug; 46(14):7052-7069. PubMed ID: 29982721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of sgRNA on-target activity in bacteria by deep learning.
    Wang L; Zhang J
    BMC Bioinformatics; 2019 Oct; 20(1):517. PubMed ID: 31651233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models.
    Zarate OA; Yang Y; Wang X; Wang JP
    BMC Bioinformatics; 2022 Oct; 23(1):446. PubMed ID: 36289480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of CRISPR sgRNA Activity Using a Deep Convolutional Neural Network.
    Xue L; Tang B; Chen W; Luo J
    J Chem Inf Model; 2019 Jan; 59(1):615-624. PubMed ID: 30485088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A generalizable Cas9/sgRNA prediction model using machine transfer learning with small high-quality datasets.
    Ham DT; Browne TS; Banglorewala PN; Wilson TL; Michael RK; Gloor GB; Edgell DR
    Nat Commun; 2023 Sep; 14(1):5514. PubMed ID: 37679324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 9. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system.
    Wong N; Liu W; Wang X
    Genome Biol; 2015 Nov; 16():218. PubMed ID: 26521937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex CRISPR/Cas9-based genome engineering enhanced by Drosha-mediated sgRNA-shRNA structure.
    Yan Q; Xu K; Xing J; Zhang T; Wang X; Wei Z; Ren C; Liu Z; Shao S; Zhang Z
    Sci Rep; 2016 Dec; 6():38970. PubMed ID: 27941919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of machine learning in the CRISPR/Cas9 system].
    Zhang GS; Yang Y; Zhang LM; Dai XH
    Yi Chuan; 2018 Sep; 40(9):704-723. PubMed ID: 30369475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usefulness of current sgRNA design guidelines and in vitro cleavage assays for plant CRISPR/Cas genome editing: a case targeting the polyphenol oxidase gene family in eggplant (Solanum melongena L.).
    Sagarbarria MGS; Caraan JAM; Layos AJG
    Transgenic Res; 2023 Dec; 32(6):561-573. PubMed ID: 37874448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of CRISPR/Cas9 single guide RNA cleavage efficiency and specificity by attention-based convolutional neural networks.
    Zhang G; Zeng T; Dai Z; Dai X
    Comput Struct Biotechnol J; 2021; 19():1445-1457. PubMed ID: 33841753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical transformation mediated CRISPR/Cas9 genome editing in Escherichia coli.
    Sun D; Wang L; Mao X; Fei M; Chen Y; Shen M; Qiu J
    Biotechnol Lett; 2019 Feb; 41(2):293-303. PubMed ID: 30547274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed Gene Editing and Protein Overexpression Using a
    Cody WB; Scholthof HB; Mirkov TE
    Plant Physiol; 2017 Sep; 175(1):23-35. PubMed ID: 28663331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-focused CRISPR-Cas9 library screen reveals fitness-associated miRNAs.
    Kurata JS; Lin RJ
    RNA; 2018 Jul; 24(7):966-981. PubMed ID: 29720387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single Molecule FRET Analysis of CRISPR Cas9 Single Guide RNA Folding Dynamics.
    Okafor IC; Ha T
    J Phys Chem B; 2023 Jan; 127(1):45-51. PubMed ID: 36563314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering.
    Noshay JM; Walker T; Alexander WG; Klingeman DM; Romero J; Walker AM; Prates E; Eckert C; Irle S; Kainer D; Jacobson DA
    Nucleic Acids Res; 2023 Oct; 51(19):10147-10161. PubMed ID: 37738140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the cleavage efficacy of CRISPR-Cas9 sgRNAs targeting ineffective regions of
    Malik A; Gul A; Munir F; Amir R; Alipour H; Babar MM; Bakhtiar SM; Paracha RZ; Khalid Z; Hayat MQ
    PeerJ; 2021; 9():e11409. PubMed ID: 34055482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.