BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29982725)

  • 1. Development of the Concept for Stem Cell-Based Developmental Neurotoxicity Evaluation.
    Fritsche E; Barenys M; Klose J; Masjosthusmann S; Nimtz L; Schmuck M; Wuttke S; Tigges J
    Toxicol Sci; 2018 Sep; 165(1):14-20. PubMed ID: 29982725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current Availability of Stem Cell-Based In Vitro Methods for Developmental Neurotoxicity (DNT) Testing.
    Fritsche E; Barenys M; Klose J; Masjosthusmann S; Nimtz L; Schmuck M; Wuttke S; Tigges J
    Toxicol Sci; 2018 Sep; 165(1):21-30. PubMed ID: 29982830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An industry perspective: A streamlined screening strategy using alternative models for chemical assessment of developmental neurotoxicity.
    Li J; Settivari R; LeBaron MJ; Marty MS
    Neurotoxicology; 2019 Jul; 73():17-30. PubMed ID: 30786249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment.
    Harrill JA; Freudenrich T; Wallace K; Ball K; Shafer TJ; Mundy WR
    Toxicol Appl Pharmacol; 2018 Sep; 354():24-39. PubMed ID: 29626487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The DNT-EST: a predictive embryonic stem cell-based assay for developmental neurotoxicity testing in vitro.
    Hayess K; Riebeling C; Pirow R; Steinfath M; Sittner D; Slawik B; Luch A; Seiler AE
    Toxicology; 2013 Dec; 314(1):135-47. PubMed ID: 24096155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotenone exerts developmental neurotoxicity in a human brain spheroid model.
    Pamies D; Block K; Lau P; Gribaldo L; Pardo CA; Barreras P; Smirnova L; Wiersma D; Zhao L; Harris G; Hartung T; Hogberg HT
    Toxicol Appl Pharmacol; 2018 Sep; 354():101-114. PubMed ID: 29428530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards in vitro DT/DNT testing: Assaying chemical susceptibility in early differentiating NT2 cells.
    Menzner AK; Abolpour Mofrad S; Friedrich O; Gilbert DF
    Toxicology; 2015 Dec; 338():69-76. PubMed ID: 26498558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurospheres as a model for developmental neurotoxicity testing.
    Fritsche E; Gassmann K; Schreiber T
    Methods Mol Biol; 2011; 758():99-114. PubMed ID: 21815061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brominated and organophosphate flame retardants target different neurodevelopmental stages, characterized with embryonic neural stem cells and neuronotypic PC12 cells.
    Slotkin TA; Skavicus S; Stapleton HM; Seidler FJ
    Toxicology; 2017 Sep; 390():32-42. PubMed ID: 28851516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Omnisphero: a high-content image analysis (HCA) approach for phenotypic developmental neurotoxicity (DNT) screenings of organoid neurosphere cultures in vitro.
    Schmuck MR; Temme T; Dach K; de Boer D; Barenys M; Bendt F; Mosig A; Fritsche E
    Arch Toxicol; 2017 Apr; 91(4):2017-2028. PubMed ID: 27722930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the biological domain of the neural embryonic stem cell test (ESTn): Morphogenetic regulators, Hox genes and cell types, and their usefulness as biomarkers for embryotoxicity screening.
    de Leeuw VC; Pennings JLA; Hessel EVS; Piersma AH
    Toxicology; 2021 Apr; 454():152735. PubMed ID: 33636252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events.
    Baumann J; Gassmann K; Masjosthusmann S; DeBoer D; Bendt F; Giersiefer S; Fritsche E
    Arch Toxicol; 2016 Jun; 90(6):1415-27. PubMed ID: 26216354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of gene expression regulation in mouse- and human embryonic stem cell assays during neural differentiation and in response to valproic acid exposure.
    Schulpen SH; Theunissen PT; Pennings JL; Piersma AH
    Reprod Toxicol; 2015 Aug; 56():77-86. PubMed ID: 26072468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminum affects neural phenotype determination of embryonic neural progenitor cells.
    Reichert KP; Schetinger MRC; Pillat MM; Bottari NB; Palma TV; Gutierres JM; Ulrich H; Andrade CM; Exley C; Morsch VMM
    Arch Toxicol; 2019 Sep; 93(9):2515-2524. PubMed ID: 31363819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stage-specific metabolic features of differentiating neurons: Implications for toxicant sensitivity.
    Delp J; Gutbier S; Cerff M; Zasada C; Niedenführ S; Zhao L; Smirnova L; Hartung T; Borlinghaus H; Schreiber F; Bergemann J; Gätgens J; Beyss M; Azzouzi S; Waldmann T; Kempa S; Nöh K; Leist M
    Toxicol Appl Pharmacol; 2018 Sep; 354():64-80. PubMed ID: 29278688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of chemical-induced changes in proliferation and apoptosis in human and mouse neuroprogenitor cells.
    Culbreth ME; Harrill JA; Freudenrich TM; Mundy WR; Shafer TJ
    Neurotoxicology; 2012 Dec; 33(6):1499-1510. PubMed ID: 22634143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing.
    Hessel EVS; Staal YCM; Piersma AH
    Toxicol Appl Pharmacol; 2018 Sep; 354():136-152. PubMed ID: 29544899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative transcriptomic study on the effects of valproic acid on two different hESCs lines in a neural teratogenicity test system.
    Colleoni S; Galli C; Gaspar JA; Meganathan K; Jagtap S; Hescheler J; Zagoura D; Bremer S; Sachinidis A; Lazzari G
    Toxicol Lett; 2014 Nov; 231(1):38-44. PubMed ID: 25192806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insight into neurotoxicity induced by developmental insults.
    Tamm C; Ceccatelli S
    Biochem Biophys Res Commun; 2017 Jan; 482(3):408-418. PubMed ID: 28212724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and in vivo.
    Wan Ibrahim WN; Tofighi R; Onishchenko N; Rebellato P; Bose R; Uhlén P; Ceccatelli S
    Toxicol Appl Pharmacol; 2013 May; 269(1):51-60. PubMed ID: 23500012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.