BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29983053)

  • 1. High-Pressure Methane Adsorption in Porous Lennard-Jones Crystals.
    Kaija AR; Wilmer CE
    J Phys Chem Lett; 2018 Aug; 9(15):4275-4281. PubMed ID: 29983053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiently mapping structure-property relationships of gas adsorption in porous materials: application to Xe adsorption.
    Kaija AR; Wilmer CE
    Faraday Discuss; 2017 Sep; 201():221-232. PubMed ID: 28634610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation of the adsorption of light gases in covalent organic frameworks.
    Garberoglio G
    Langmuir; 2007 Nov; 23(24):12154-8. PubMed ID: 17956137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerating Discovery of Metal-Organic Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning.
    Wang R; Zhong Y; Bi L; Yang M; Xu D
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52797-52807. PubMed ID: 33175490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward comprehensive exploration of the physisorption space in porous pseudomaterials using an iterative mutation search algorithm.
    Boone P; Wilmer CE
    J Chem Phys; 2021 Dec; 155(23):234114. PubMed ID: 34937357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations.
    Manda T; Barasa GO; Louis H; Irfan A; Agumba JO; Lugasi SO; Pembere AMS
    J Mol Model; 2024 Jan; 30(2):43. PubMed ID: 38236500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Low-Pressure Methane Adsorption Isotherms for Higher-Throughput Screening of Methane Storage Materials.
    Korman KJ; Decker GE; Dworzak MR; Deegan MM; Antonio AM; Taggart GA; Bloch ED
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40318-40327. PubMed ID: 32786240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grand canonical Monte Carlo simulation for determination of optimum parameters for adsorption of supercritical methane in pillared layered pores.
    Cao D; Wang W; Duan X
    J Colloid Interface Sci; 2002 Oct; 254(1):1-7. PubMed ID: 12702418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical prediction of high pressure methane adsorption in porous aromatic frameworks (PAFs).
    Cossi M; Gatti G; Canti L; Tei L; Errahali M; Marchese L
    Langmuir; 2012 Oct; 28(40):14405-14. PubMed ID: 22935012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methane storage in homogeneous armchair open-ended single-walled boron nitride nanotube triangular arrays: a grand canonical Monte Carlo simulation study.
    Mahdizadeh SJ; Tayyari SF
    J Mol Model; 2012 Jun; 18(6):2699-708. PubMed ID: 22102208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grand canonical Monte Carlo simulations of methane adsorption in fullerene pillared graphene nanocomposites.
    Baykasoglu C; Mert H; Deniz CU
    J Mol Graph Model; 2021 Jul; 106():107909. PubMed ID: 33848950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico design of porous polymer networks: high-throughput screening for methane storage materials.
    Martin RL; Simon CM; Smit B; Haranczyk M
    J Am Chem Soc; 2014 Apr; 136(13):5006-22. PubMed ID: 24611543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel bismuth-based metal-organic framework for high volumetric methane and carbon dioxide adsorption.
    Savage M; Yang S; Suyetin M; Bichoutskaia E; Lewis W; Blake AJ; Barnett SA; Schröder M
    Chemistry; 2014 Jun; 20(26):8024-9. PubMed ID: 24827914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat of adsorption, adsorption stress, and optimal storage of methane in slit and cylindrical carbon pores predicted by classical density functional theory.
    Hlushak S
    Phys Chem Chem Phys; 2018 Jan; 20(2):872-888. PubMed ID: 29239426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling.
    Hobday CL; Woodall CH; Lennox MJ; Frost M; Kamenev K; Düren T; Morrison CA; Moggach SA
    Nat Commun; 2018 Apr; 9(1):1429. PubMed ID: 29650966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GCMC investigation into adamantane-based aromatic frameworks with diamond-like structure as high-capacity hydrogen storage materials.
    Li XD; Zhang H; Tang YJ; Cheng XL
    Phys Chem Chem Phys; 2012 Feb; 14(7):2391-8. PubMed ID: 22245956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials.
    Thomas KM
    Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption mechanism and uptake of methane in covalent organic frameworks: theory and experiment.
    Mendoza-Cortés JL; Han SS; Furukawa H; Yaghi OM; Goddard WA
    J Phys Chem A; 2010 Oct; 114(40):10824-33. PubMed ID: 20845983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grand canonical monte carlo simulation study of methane adsorption at an open graphite surface and in slit-like carbon pores at 273 K.
    Kowalczyk P; Tanaka H; Kaneko K; Terzyk AP; Do DD
    Langmuir; 2005 Jun; 21(12):5639-46. PubMed ID: 15924500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks.
    Frost H; Düren T; Snurr RQ
    J Phys Chem B; 2006 May; 110(19):9565-70. PubMed ID: 16686503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.