These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29983307)

  • 1. Enhanced radiographic visualization of resorbable foils for orbital floor reconstruction: A proof of principle.
    Doll C; Thieme N; Schönmuth S; Voss JO; Nahles S; Beck-Broichsitter B; Heiland M; Raguse JD
    J Craniomaxillofac Surg; 2018 Sep; 46(9):1533-1538. PubMed ID: 29983307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined use of titanium mesh and resorbable PLLA-PGA implant in the treatment of large orbital floor fractures.
    Magaña FG; Arzac RM; De Hilario Avilés L
    J Craniofac Surg; 2011 Nov; 22(6):1991-5. PubMed ID: 22067850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(trimethylene carbonate) and biphasic calcium phosphate composites for orbital floor reconstruction: a feasibility study in sheep.
    van Leeuwen AC; Yuan H; Passanisi G; van der Meer JW; de Bruijn JD; van Kooten TG; Grijpma DW; Bos RR
    Eur Cell Mater; 2014 Jan; 27():81-96 ; discussion 96-7. PubMed ID: 24488822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of cone beam computed tomography in the postoperative assessment of orbital wall fracture reconstruction.
    Tsao K; Cheng A; Goss A; Donovan D
    J Craniofac Surg; 2014 Jul; 25(4):1150-4. PubMed ID: 24933305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo Degradation of Forged-Unsintered Hydroxyapatite and Poly-L-lactide Mesh Used for Orbital Reconstruction.
    Hwang K
    J Craniofac Surg; 2019 Jun; 30(4):1208-1210. PubMed ID: 30676443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term degradation of a poly-lactide co-glycolide/β-tricalcium phosphate biocomposite interference screw.
    Barber FA; Dockery WD; Hrnack SA
    Arthroscopy; 2011 May; 27(5):637-43. PubMed ID: 21429700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediate Outcomes of Orbital Wall Reconstruction Using Different Alloplastic Materials: Which Is Ideal?
    Kohyama K; Ishihara T; Tsuboi Y; Morishima Y
    Plast Reconstr Surg; 2022 Oct; 150(4):865-875. PubMed ID: 35969504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immediate and long-term results of unsintered hydroxyapatite and poly L-lactide composite sheets for orbital wall fracture reconstruction.
    Kohyama K; Morishima Y; Arisawa K; Arisawa Y; Kato H
    J Plast Reconstr Aesthet Surg; 2018 Jul; 71(7):1069-1075. PubMed ID: 29759951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The degradation outcome of biocomposite suture anchors made from poly L-lactide-co-glycolide and β-tricalcium phosphate.
    Barber FA; Dockery WD; Cowden CH
    Arthroscopy; 2013 Nov; 29(11):1834-9. PubMed ID: 24209681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the supporting strength of a poly-L-lactic acid sheet and porous polyethylene (Medpor) for the reconstruction of orbital floor fractures.
    Hwang K; Kim DH
    J Craniofac Surg; 2010 May; 21(3):847-53. PubMed ID: 20485067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orbital floor fractures--short- and intermediate-term complications depending on treatment procedures.
    Holtmann H; Eren H; Sander K; Kübler NR; Handschel J
    Head Face Med; 2016 Jan; 12():1. PubMed ID: 26729217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repair of orbital floor fractures with hydroxyapatite block scaffolding.
    Lemke BN; Kikkawa DO
    Ophthalmic Plast Reconstr Surg; 1999 May; 15(3):161-5. PubMed ID: 10355833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Newly Developed Resorbable Magnesium Biomaterials for Orbital Floor Reconstruction in Caprine and Ovine Animal Models-A Prototype Design and Proof-of-Principle Study.
    Tomic J; Wiederstein-Grasser I; Schanbacher M; Weinberg AM
    J Funct Biomater; 2023 Jun; 14(7):. PubMed ID: 37504834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early Hypoglobus in Orbital Floor Reconstruction With Resorbable Implants.
    Kim EH; Lee SH
    J Craniofac Surg; 2021 Jun; 32(4):1322-1324. PubMed ID: 33196620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Mirrored Computed Tomograms on Decision-Making for Revising Surgically Treated Orbital Floor Fractures.
    Blumer M; Gander T; Kruse Gujer A; Seifert B; Rücker M; Lübbers HT
    J Oral Maxillofac Surg; 2015 Oct; 73(10):1982.e1-9. PubMed ID: 26172991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cone beam computed tomography for imaging orbital trauma--image quality and radiation dose compared with conventional multislice computed tomography.
    Brisco J; Fuller K; Lee N; Andrew D
    Br J Oral Maxillofac Surg; 2014 Jan; 52(1):76-80. PubMed ID: 24139635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of small orbital floor fractures with resorbable collagen membranes.
    Piombino P; Spinzia A; Abbate V; Bonavolontà P; Orabona GD; Califano L
    J Craniofac Surg; 2013 Mar; 24(2):571-4. PubMed ID: 23524744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resorbable mesh in the treatment of orbital floor fractures.
    Hollier LH; Rogers N; Berzin E; Stal S
    J Craniofac Surg; 2001 May; 12(3):242-6. PubMed ID: 11358097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite materials based on poly(trimethylene carbonate) and β-tricalcium phosphate for orbital floor and wall reconstruction.
    van Leeuwen AC; Bos RR; Grijpma DW
    J Biomed Mater Res B Appl Biomater; 2012 Aug; 100(6):1610-20. PubMed ID: 22707458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Open reduction in trapdoor-type blowout fractures using absorbable mesh plates.
    Kim YJ; Choi SH; Jun YJ; Seo BC
    J Craniofac Surg; 2011 Nov; 22(6):2263-7. PubMed ID: 22075826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.