BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29983373)

  • 1. Structural Basis for Auto-Inhibition of the NDR1 Kinase Domain by an Atypically Long Activation Segment.
    Xiong S; Lorenzen K; Couzens AL; Templeton CM; Rajendran D; Mao DYL; Juang YC; Chiovitti D; Kurinov I; Guettler S; Gingras AC; Sicheri F
    Structure; 2018 Aug; 26(8):1101-1115.e6. PubMed ID: 29983373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Basis for MARK1 Kinase Autoinhibition by Its KA1 Domain.
    Emptage RP; Lemmon MA; Ferguson KM; Marmorstein R
    Structure; 2018 Aug; 26(8):1137-1143.e3. PubMed ID: 30099988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the FYCO1 RUN domain suggests possible interfaces with small GTPases.
    Sakurai S; Shimizu T; Ohto U
    Acta Crystallogr F Struct Biol Commun; 2020 Aug; 76(Pt 8):326-333. PubMed ID: 32744243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1.
    Böhm R; Imseng S; Jakob RP; Hall MN; Maier T; Hiller S
    Mol Cell; 2021 Jun; 81(11):2403-2416.e5. PubMed ID: 33852892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The MST4-MOB4 complex disrupts the MST1-MOB1 complex in the Hippo-YAP pathway and plays a pro-oncogenic role in pancreatic cancer.
    Chen M; Zhang H; Shi Z; Li Y; Zhang X; Gao Z; Zhou L; Ma J; Xu Q; Guan J; Cheng Y; Jiao S; Zhou Z
    J Biol Chem; 2018 Sep; 293(37):14455-14469. PubMed ID: 30072378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Furry protein suppresses nuclear localization of yes-associated protein (YAP) by activating NDR kinase and binding to YAP.
    Irie K; Nagai T; Mizuno K
    J Biol Chem; 2020 Mar; 295(10):3017-3028. PubMed ID: 31996378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide Binding, Evolutionary Insights, and Interaction Partners of the Pseudokinase Unc-51-like Kinase 4.
    Preuss F; Chatterjee D; Mathea S; Shrestha S; St-Germain J; Saha M; Kannan N; Raught B; Rottapel R; Knapp S
    Structure; 2020 Nov; 28(11):1184-1196.e6. PubMed ID: 32814032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of PknI from Mycobacterium tuberculosis shows an inactive, pseudokinase-like conformation.
    Lisa MN; Wagner T; Alexandre M; Barilone N; Raynal B; Alzari PM; Bellinzoni M
    FEBS J; 2017 Feb; 284(4):602-614. PubMed ID: 28054744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-Function Relationship of the Bik1-Bim1 Complex.
    Stangier MM; Kumar A; Chen X; Farcas AM; Barral Y; Steinmetz MO
    Structure; 2018 Apr; 26(4):607-618.e4. PubMed ID: 29576319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution Crystal Structure of Human pERp1, A Saposin-like Protein Involved in IgA, IgM and Integrin Maturation in the Endoplasmic Reticulum.
    Sowa ST; Moilanen A; Biterova E; Saaranen MJ; Lehtiö L; Ruddock LW
    J Mol Biol; 2021 Mar; 433(5):166826. PubMed ID: 33453188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the complex of phosphorylated liver kinase B1 and 14-3-3ζ.
    Lu Y; Ding S; Zhou R; Wu J
    Acta Crystallogr F Struct Biol Commun; 2017 Apr; 73(Pt 4):196-201. PubMed ID: 28368277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the extracellular domain of the receptor-like kinase TMK3 from Arabidopsis thaliana.
    Chen H; Kong Y; Chen J; Li L; Li X; Yu F; Ming Z
    Acta Crystallogr F Struct Biol Commun; 2020 Aug; 76(Pt 8):384-390. PubMed ID: 32744250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for autoinhibition and its relief of MOB1 in the Hippo pathway.
    Kim SY; Tachioka Y; Mori T; Hakoshima T
    Sci Rep; 2016 Jun; 6():28488. PubMed ID: 27335147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for Mob1-dependent activation of the core Mst-Lats kinase cascade in Hippo signaling.
    Ni L; Zheng Y; Hara M; Pan D; Luo X
    Genes Dev; 2015 Jul; 29(13):1416-31. PubMed ID: 26108669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MOB1 Mediated Phospho-recognition in the Core Mammalian Hippo Pathway.
    Couzens AL; Xiong S; Knight JDR; Mao DY; Guettler S; Picaud S; Kurinov I; Filippakopoulos P; Sicheri F; Gingras AC
    Mol Cell Proteomics; 2017 Jun; 16(6):1098-1110. PubMed ID: 28373298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimerization of the Pragmin Pseudo-Kinase Regulates Protein Tyrosine Phosphorylation.
    Lecointre C; Simon V; Kerneur C; Allemand F; Fournet A; Montarras I; Pons JL; Gelin M; Brignatz C; Urbach S; Labesse G; Roche S
    Structure; 2018 Apr; 26(4):545-554.e4. PubMed ID: 29503074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Sequence Recognition of Human CXXC Domains and Their Structural Determinants.
    Xu C; Liu K; Lei M; Yang A; Li Y; Hughes TR; Min J
    Structure; 2018 Jan; 26(1):85-95.e3. PubMed ID: 29276034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimentally based structural model of Yih1 provides insight into its function in controlling the key translational regulator Gcn2.
    Harjes E; Jameson GB; Tu YH; Burr N; Loo TS; Goroncy AK; Edwards PJB; Harjes S; Munro B; Göbl C; Sattlegger E; Norris GE
    FEBS Lett; 2021 Feb; 595(3):324-340. PubMed ID: 33156522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control.
    Kulaberoglu Y; Lin K; Holder M; Gai Z; Gomez M; Assefa Shifa B; Mavis M; Hoa L; Sharif AAD; Lujan C; Smith ESJ; Bjedov I; Tapon N; Wu G; Hergovich A
    Nat Commun; 2017 Sep; 8(1):695. PubMed ID: 28947795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auto-phosphorylation Represses Protein Kinase R Activity.
    Wang D; de Weerd NA; Willard B; Polekhina G; Williams BR; Sadler AJ
    Sci Rep; 2017 Mar; 7():44340. PubMed ID: 28281686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.