BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29983486)

  • 1. ASBAAC: Automated Salt-Bridge and Aromatic-Aromatic Calculator.
    Roy C; Datta S
    Bioinformation; 2018; 14(4):164-166. PubMed ID: 29983486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-protein interfaces are vdW dominant with selective H-bonds and (or) electrostatics towards broad functional specificity.
    Nilofer C; Sukhwal A; Mohanapriya A; Kangueane P
    Bioinformation; 2017; 13(6):164-173. PubMed ID: 28729757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SBION: A Program for Analyses of Salt-Bridges from Multiple Structure Files.
    Gupta PS; Mondal S; Mondal B; Islam RN; Banerjee S; Bandyopadhyay AK
    Bioinformation; 2014; 10(3):164-6. PubMed ID: 24748757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SBION2: Analyses of Salt Bridges from Multiple Structure Files, Version 2.
    Gupta PS; Nayek A; Banerjee S; Seth P; Das S; Sur VP; Roy C; Bandyopadhyay AK
    Bioinformation; 2015; 11(1):39-42. PubMed ID: 25780279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt-bridge networks within globular and disordered proteins: characterizing trends for designable interactions.
    Basu S; Mukharjee D
    J Mol Model; 2017 Jul; 23(7):206. PubMed ID: 28626846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Analysis of Non-covalent Interactions in Phycocyanin Subunit Interfaces.
    Breberina LM; Zlatović MV; Nikolić MR; Stojanović SĐ
    Mol Inform; 2019 Nov; 38(11-12):e1800145. PubMed ID: 31535472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding antibody-antigen associations by molecular dynamics simulations: detection of important intra- and inter-molecular salt bridges.
    Sinha N; Li Y; Lipschultz CA; Smith-Gill SJ
    Cell Biochem Biophys; 2007; 47(3):361-75. PubMed ID: 17652781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-aromatic contacts in intra-strand base pairs: analysis of high-resolution DNA crystal structures and quantum chemical calculations.
    Jain A; Krishna Deepak RNV; Sankararamakrishnan R
    J Struct Biol; 2014 Jul; 187(1):49-57. PubMed ID: 24816369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges.
    Albeck S; Unger R; Schreiber G
    J Mol Biol; 2000 May; 298(3):503-20. PubMed ID: 10772866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do salt bridges stabilize proteins? A continuum electrostatic analysis.
    Hendsch ZS; Tidor B
    Protein Sci; 1994 Feb; 3(2):211-26. PubMed ID: 8003958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aromatic-aromatic interactions in the zinc finger motif. Analysis of the two-dimensional nuclear magnetic resonance structure of a mutant domain.
    Jasanoff A; Kochoyan M; Fraenkel E; Lee JP; Weiss MA
    J Mol Biol; 1992 Jun; 225(4):1035-47. PubMed ID: 1613788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic interactions at the ligand-protein interface: Implications for the development of docking scoring functions.
    Brylinski M
    Chem Biol Drug Des; 2018 Feb; 91(2):380-390. PubMed ID: 28816025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role of salt bridges in mediating drug potency: A lesson from the N-myristoyltransferase inhibitors.
    Spassov DS; Atanasova M; Doytchinova I
    Front Mol Biosci; 2022; 9():1066029. PubMed ID: 36703920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NCIPLOT: a program for plotting non-covalent interaction regions.
    Contreras-García J; Johnson ER; Keinan S; Chaudret R; Piquemal JP; Beratan DN; Yang W
    J Chem Theory Comput; 2011 Mar; 7(3):625-632. PubMed ID: 21516178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds.
    Zhao YH; Abraham MH; Zissimos AM
    J Org Chem; 2003 Sep; 68(19):7368-73. PubMed ID: 12968888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex salt bridges in proteins: statistical analysis of structure and function.
    Musafia B; Buchner V; Arad D
    J Mol Biol; 1995 Dec; 254(4):761-70. PubMed ID: 7500348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allosteric communication in the tryptophan synthase bienzyme complex: roles of the beta-subunit aspartate 305-arginine 141 salt bridge.
    Ferrari D; Niks D; Yang LH; Miles EW; Dunn MF
    Biochemistry; 2003 Jul; 42(25):7807-18. PubMed ID: 12820890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Calculation of Both Electrostatic and Van der Waals Effects to Probe the Efficiency of Solvent Extraction of Heterocyclic Aromatics from Heavy Oil.
    Wei X; Cui L; Liu C; Shen K; Xu J; Dilworth J; Xiao T; Cao F
    Chemistry; 2023 Dec; 29(67):e202301954. PubMed ID: 37665039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of turn and salt bridge contributions to beta-hairpin stability: MD simulations of C-terminal fragment from the B1 domain of protein G.
    Tsai J; Levitt M
    Biophys Chem; 2002 Dec; 101-102():187-201. PubMed ID: 12488000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.