These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 29983883)
1. Thymoquinone challenges UHRF1 to commit auto-ubiquitination: a key event for apoptosis induction in cancer cells. Ibrahim A; Alhosin M; Papin C; Ouararhni K; Omran Z; Zamzami MA; Al-Malki AL; Choudhry H; Mély Y; Hamiche A; Mousli M; Bronner C Oncotarget; 2018 Jun; 9(47):28599-28611. PubMed ID: 29983883 [TBL] [Abstract][Full Text] [Related]
2. UHRF1 poly-auto-ubiquitination induced by the anti-cancer drug, thymoquinone, is involved in the DNA repair machinery recruitment. Almalki NAR; Sabir JSM; Ibrahim A; Alhosin M; Asseri AH; Albiheyri RS; Zari AT; Bahieldin A; Javed A; Mély Y; Hamiche A; Mousli M; Bronner C Int J Biochem Cell Biol; 2024 Jun; 171():106582. PubMed ID: 38649007 [TBL] [Abstract][Full Text] [Related]
3. Down-regulation of cyclic nucleotide phosphodiesterase PDE1A is the key event of p73 and UHRF1 deregulation in thymoquinone-induced acute lymphoblastic leukemia cell apoptosis. Abusnina A; Alhosin M; Keravis T; Muller CD; Fuhrmann G; Bronner C; Lugnier C Cell Signal; 2011 Jan; 23(1):152-60. PubMed ID: 20807569 [TBL] [Abstract][Full Text] [Related]
4. Epigallocatechin-3-gallate up-regulates tumor suppressor gene expression via a reactive oxygen species-dependent down-regulation of UHRF1. Achour M; Mousli M; Alhosin M; Ibrahim A; Peluso J; Muller CD; Schini-Kerth VB; Hamiche A; Dhe-Paganon S; Bronner C Biochem Biophys Res Commun; 2013 Jan; 430(1):208-12. PubMed ID: 23201574 [TBL] [Abstract][Full Text] [Related]
5. Induction of apoptosis by thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Alhosin M; Abusnina A; Achour M; Sharif T; Muller C; Peluso J; Chataigneau T; Lugnier C; Schini-Kerth VB; Bronner C; Fuhrmann G Biochem Pharmacol; 2010 May; 79(9):1251-60. PubMed ID: 20026309 [TBL] [Abstract][Full Text] [Related]
6. CD47 activation-induced UHRF1 over-expression is associated with silencing of tumor suppressor gene p16INK4A in glioblastoma cells. Boukhari A; Alhosin M; Bronner C; Sagini K; Truchot C; Sick E; Schini-Kerth VB; André P; Mély Y; Mousli M; Gies JP Anticancer Res; 2015 Jan; 35(1):149-57. PubMed ID: 25550546 [TBL] [Abstract][Full Text] [Related]
7. TIP60 governs the auto‑ubiquitination of UHRF1 through USP7 dissociation from the UHRF1/USP7 complex. Ahmad T; Ashraf W; Ibrahim A; Zaayter L; Muller CD; Hamiche A; Mély Y; Bronner C; Mousli M Int J Oncol; 2021 Nov; 59(5):. PubMed ID: 34558642 [TBL] [Abstract][Full Text] [Related]
9. Targeting the SET and RING-associated (SRA) domain of ubiquitin-like, PHD and ring finger-containing 1 (UHRF1) for anti-cancer drug development. Patnaik D; Estève PO; Pradhan S Oncotarget; 2018 May; 9(40):26243-26258. PubMed ID: 29899856 [TBL] [Abstract][Full Text] [Related]
10. Corrigendum to "Role of UHRF1 in malignancy and its function as a therapeutic target for molecular docking towards the SRA domain" [Int. J. Biochem. Cell Biol. 114 (September 2019) 105558]. Polepalli S; George SM; Valli Sri Vidya R; Rodrigues GS; Ramachandra L; Chandrashekar R; M D; Rao PPN; Pestell RG; Rao M Int J Biochem Cell Biol; 2019 Sep; 114():105577. PubMed ID: 31391149 [TBL] [Abstract][Full Text] [Related]
11. Targeting microRNA/UHRF1 pathways as a novel strategy for cancer therapy. Choudhry H; Zamzami MA; Omran Z; Wu W; Mousli M; Bronner C; Alhosin M Oncol Lett; 2018 Jan; 15(1):3-10. PubMed ID: 29285183 [TBL] [Abstract][Full Text] [Related]
12. A high-throughput screen of pharmacologically active compounds for inhibitors of UHRF1 reveals epigenetic activity of anthracycline derivative chemotherapeutic drugs. Giovinazzo H; Walker D; Wyhs N; Liu J; Esopi DM; Vaghasia AM; Jain Y; Bhamidipati A; Zhou J; Nelson WG; Yegnasubramanian S Oncotarget; 2019 Apr; 10(32):3040-3050. PubMed ID: 31105884 [TBL] [Abstract][Full Text] [Related]
13. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos. Jacob V; Chernyavskaya Y; Chen X; Tan PS; Kent B; Hoshida Y; Sadler KC Development; 2015 Feb; 142(3):510-21. PubMed ID: 25564650 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of Protein Disulfide Isomerase (PDIA1) Leads to Proteasome-Mediated Degradation of Ubiquitin-like PHD and RING Finger Domain-Containing Protein 1 (UHRF1) and Increased Sensitivity of Glioblastoma Cells to Topoisomerase II Inhibitors. Mouawad R; Neamati N ACS Pharmacol Transl Sci; 2023 Jan; 6(1):100-114. PubMed ID: 36654750 [TBL] [Abstract][Full Text] [Related]
16. UHRF1 Induces Metastasis in Thyroid Cancer. Kuang BH; Lin GH; Liu Q; Wang BC J Oncol; 2022; 2022():7716427. PubMed ID: 35996525 [TBL] [Abstract][Full Text] [Related]
17. HAUSP-regulated switch from auto- to p53 ubiquitination by Mdm2 (in silico discovery). Brazhnik P; Kohn KW Math Biosci; 2007 Nov; 210(1):60-77. PubMed ID: 17585950 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of Mdm2 and MdmX fusion proteins alters p53 mediated transactivation, ubiquitination, and degradation. Ghosh M; Huang K; Berberich SJ Biochemistry; 2003 Mar; 42(8):2291-9. PubMed ID: 12600196 [TBL] [Abstract][Full Text] [Related]
19. UHRF1 is required for basal stem cell proliferation in response to airway injury. Xiang H; Yuan L; Gao X; Alexander PB; Lopez O; Lau C; Ding Y; Chong M; Sun T; Chen R; Liu SQ; Wu H; Wan Y; Randell SH; Li QJ; Wang XF Cell Discov; 2017; 3():17019. PubMed ID: 28626588 [TBL] [Abstract][Full Text] [Related]
20. Novel UHRF1-MYC Axis in Acute Lymphoblastic Leukemia. Park S; Sater AHA; Fahrmann JF; Irajizad E; Cai Y; Katayama H; Vykoukal J; Kobayashi M; Dennison JB; Garcia-Manero G; Mullighan CG; Gu Z; Konopleva M; Hanash S Cancers (Basel); 2022 Aug; 14(17):. PubMed ID: 36077796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]