These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 29984479)
1. Uniform Core-Shell Nanoparticles with Thiolated Hyaluronic Acid Coating to Enhance Oral Delivery of Insulin. Tian H; He Z; Sun C; Yang C; Zhao P; Liu L; Leong KW; Mao HQ; Liu Z; Chen Y Adv Healthc Mater; 2018 Sep; 7(17):e1800285. PubMed ID: 29984479 [TBL] [Abstract][Full Text] [Related]
2. Scalable production of core-shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. He Z; Liu Z; Tian H; Hu Y; Liu L; Leong KW; Mao HQ; Chen Y Nanoscale; 2018 Feb; 10(7):3307-3319. PubMed ID: 29384554 [TBL] [Abstract][Full Text] [Related]
3. Efficient mucus permeation and tight junction opening by dissociable "mucus-inert" agent coated trimethyl chitosan nanoparticles for oral insulin delivery. Liu M; Zhang J; Zhu X; Shan W; Li L; Zhong J; Zhang Z; Huang Y J Control Release; 2016 Jan; 222():67-77. PubMed ID: 26686663 [TBL] [Abstract][Full Text] [Related]
4. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. Sheng J; Han L; Qin J; Ru G; Li R; Wu L; Cui D; Yang P; He Y; Wang J ACS Appl Mater Interfaces; 2015 Jul; 7(28):15430-41. PubMed ID: 26111015 [TBL] [Abstract][Full Text] [Related]
5. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Bagre AP; Jain K; Jain NK Int J Pharm; 2013 Nov; 456(1):31-40. PubMed ID: 23994363 [TBL] [Abstract][Full Text] [Related]
6. Design of biotin decorated enterocyte targeting muco-inert nanocomplexes for enhanced oral insulin delivery. Cui Z; Qin L; Guo S; Cheng H; Zhang X; Guan J; Mao S Carbohydr Polym; 2021 Jun; 261():117873. PubMed ID: 33766360 [TBL] [Abstract][Full Text] [Related]
7. Thiolated Nanoparticles Overcome the Mucus Barrier and Epithelial Barrier for Oral Delivery of Insulin. Zhou S; Deng H; Zhang Y; Wu P; He B; Dai W; Zhang H; Zhang Q; Zhao R; Wang X Mol Pharm; 2020 Jan; 17(1):239-250. PubMed ID: 31800258 [TBL] [Abstract][Full Text] [Related]
9. Core-Shell Biopolymer Nanoparticles for Co-Delivery of Curcumin and Piperine: Sequential Electrostatic Deposition of Hyaluronic Acid and Chitosan Shells on the Zein Core. Chen S; McClements DJ; Jian L; Han Y; Dai L; Mao L; Gao Y ACS Appl Mater Interfaces; 2019 Oct; 11(41):38103-38115. PubMed ID: 31509373 [TBL] [Abstract][Full Text] [Related]
10. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. Shan W; Zhu X; Liu M; Li L; Zhong J; Sun W; Zhang Z; Huang Y ACS Nano; 2015 Mar; 9(3):2345-56. PubMed ID: 25658958 [TBL] [Abstract][Full Text] [Related]
11. Chitosan-Coated Alginate Nanoparticles Enhanced Absorption Profile of Insulin Via Oral Administration. Jaafar MHM; Hamid KA Curr Drug Deliv; 2019; 16(7):672-686. PubMed ID: 31250754 [TBL] [Abstract][Full Text] [Related]
12. Lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characterizations. Mahjub R; Radmehr M; Dorkoosh FA; Ostad SN; Rafiee-Tehrani M Drug Dev Ind Pharm; 2014 Dec; 40(12):1645-59. PubMed ID: 24093431 [TBL] [Abstract][Full Text] [Related]
13. Development of shell cross-linked nanoparticles based on boronic acid-related reactions for self-regulated insulin delivery. Wang Y; Huang F; Sun Y; Gao M; Chai Z J Biomater Sci Polym Ed; 2017 Jan; 28(1):93-106. PubMed ID: 27719550 [TBL] [Abstract][Full Text] [Related]
15. Overcoming Multiple Absorption Barrier for Insulin Oral Delivery Using Multifunctional Nanoparticles Based on Chitosan Derivatives and Hyaluronic Acid. Chen Z; Han S; Yang X; Xu L; Qi H; Hao G; Cao J; Liang Y; Ma Q; Zhang G; Sun Y Int J Nanomedicine; 2020; 15():4877-4898. PubMed ID: 32753869 [TBL] [Abstract][Full Text] [Related]
16. Scalable Manufacturing of Enteric Encapsulation Systems for Site-Specific Oral Insulin Delivery. Sun L; Liu Z; Tian H; Le Z; Liu L; Leong KW; Mao HQ; Chen Y Biomacromolecules; 2019 Jan; 20(1):528-538. PubMed ID: 30537806 [TBL] [Abstract][Full Text] [Related]
17. Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo. Sudhakar S; Chandran SV; Selvamurugan N; Nazeer RA Int J Biol Macromol; 2020 May; 150():281-288. PubMed ID: 32057846 [TBL] [Abstract][Full Text] [Related]
18. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Li X; Guo S; Zhu C; Zhu Q; Gan Y; Rantanen J; Rahbek UL; Hovgaard L; Yang M Biomaterials; 2013 Dec; 34(37):9678-87. PubMed ID: 24016855 [TBL] [Abstract][Full Text] [Related]
19. Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. Ji N; Hong Y; Gu Z; Cheng L; Li Z; Li C J Control Release; 2019 Nov; 313():1-13. PubMed ID: 31622690 [TBL] [Abstract][Full Text] [Related]
20. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Fan W; Xia D; Zhu Q; Li X; He S; Zhu C; Guo S; Hovgaard L; Yang M; Gan Y Biomaterials; 2018 Jan; 151():13-23. PubMed ID: 29055774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]