BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 29985133)

  • 1. Evaluation of a Three-Hydrophone Method for 2-D Cavitation Localization.
    Lafond M; Asquier N; Mestas JA; Carpentier A; Umemura SI; Lafon C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jul; 65(7):1093-1101. PubMed ID: 29985133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a Three Hydrophones Method for 2-Dimensional Cavitation Localization.
    Lafond M; Asquier N; Mestas JL; Carpentier A; Umemura SI; Lafon C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Apr; ():. PubMed ID: 29993829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weighting the Passive Acoustic Mapping Technique With the Phase Coherence Factor for Passive Ultrasound Imaging of Ultrasound-Induced Cavitation.
    Boulos P; Varray F; Poizat A; Ramalli A; Gilles B; Bera JC; Cachard C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2301-2310. PubMed ID: 30273149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation.
    Vlaisavljevich E; Lin KW; Maxwell A; Warnez MT; Mancia L; Singh R; Putnam AJ; Fowlkes B; Johnsen E; Cain C; Xu Z
    Ultrasound Med Biol; 2015 Jun; 41(6):1651-67. PubMed ID: 25766571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of f-number on the histotripsy intrinsic threshold and cavitation bubble cloud behavior.
    Vlaisavljevich E; Gerhardson T; Hall T; Xu Z
    Phys Med Biol; 2017 Feb; 62(4):1269-1290. PubMed ID: 27995900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the cavitation collapse time to indicate the extent of histotripsy-induced tissue fractionation.
    Macoskey JJ; Choi SW; Hall TL; Vlaisavljevich E; Lundt JE; Lee FT; Johnsen E; Cain CA; Xu Z
    Phys Med Biol; 2018 Mar; 63(5):055013. PubMed ID: 29424711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated Histotripsy and Bubble Coalescence Transducer for Rapid Tissue Ablation.
    Shi A; Xu Z; Lundt J; Tamaddoni HA; Worlikar T; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1822-1831. PubMed ID: 30040636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy.
    Hu H; Xu S; Yuan Y; Liu R; Wang S; Wan M
    J Acoust Soc Am; 2015 May; 137(5):2563-72. PubMed ID: 25994689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.
    Xu S; Hu H; Jiang H; Xu Z; Wan M
    J Ultrasound Med; 2014 Nov; 33(11):1957-70. PubMed ID: 25336483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of acoustic cavitation detection thresholds measured with piezo-electric and fiber-optic hydrophone sensors.
    Bull V; Civale J; Rivens I; Ter Haar G
    Ultrasound Med Biol; 2013 Dec; 39(12):2406-21. PubMed ID: 24035410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delay multiply and sum beamforming method applied to enhance linear-array passive acoustic mapping of ultrasound cavitation.
    Lu S; Li R; Yu X; Wang D; Wan M
    Med Phys; 2019 Oct; 46(10):4441-4454. PubMed ID: 31309568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A real-time controller for sustaining thermally relevant acoustic cavitation during ultrasound therapy.
    Hockham N; Coussios CC; Arora M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2685-94. PubMed ID: 21156364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle-mediated histotripsy (NMH) using perfluorohexane 'nanocones'.
    Khirallah J; Schmieley R; Demirel E; Rehman TU; Howell J; Durmaz YY; Vlaisavljevich E
    Phys Med Biol; 2019 Jun; 64(12):125018. PubMed ID: 31071701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An acoustic backscatter-based method for localization of lesions induced by high-intensity focused ultrasound.
    Zheng X; Vaezy S
    Ultrasound Med Biol; 2010 Apr; 36(4):610-22. PubMed ID: 20211516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bubble dynamics in boiling histotripsy.
    Pahk KJ; Gélat P; Kim H; Saffari N
    Ultrasound Med Biol; 2018 Dec; 44(12):2673-2696. PubMed ID: 30228043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2D and 3D real-time passive cavitation imaging of pulsed cavitation ultrasound therapy in moving tissues.
    Suarez Escudero D; Goudot G; Vion M; Tanter M; Pernot M
    Phys Med Biol; 2018 Dec; 63(23):235028. PubMed ID: 30520419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focused Ultrasound and Lithotripsy.
    Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y
    Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive spatial mapping of inertial cavitation during HIFU exposure.
    Gyöngy M; Coussios CC
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):48-56. PubMed ID: 19628450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloud cavitation control for lithotripsy using high intensity focused ultrasound.
    Ikeda T; Yoshizawa S; Tosaki M; Allen JS; Takagi S; Ohta N; Kitamura T; Matsumoto Y
    Ultrasound Med Biol; 2006 Sep; 32(9):1383-97. PubMed ID: 16965979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precision control of lesions by high-intensity focused ultrasound cavitation-based histotripsy through varying pulse duration.
    Xu J; Bigelow TA; Nagaraju R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1401-11. PubMed ID: 25004507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.