These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 29985148)
1. Design and Functional Evaluation of a Dexterous Myoelectric Hand Prosthesis With Biomimetic Tactile Sensor. Zhang T; Jiang L; Liu H IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1391-1399. PubMed ID: 29985148 [TBL] [Abstract][Full Text] [Related]
2. The S-Finger: A Synergetic Externally Powered Digit With Tactile Sensing and Feedback. Imbinto I; Montagnani F; Bacchereti M; Cipriani C; Davalli A; Sacchetti R; Gruppioni E; Castellano S; Controzzi M IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1264-1271. PubMed ID: 29877851 [TBL] [Abstract][Full Text] [Related]
3. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis. Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418 [TBL] [Abstract][Full Text] [Related]
4. Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation. Dosen S; Cipriani C; Kostić M; Controzzi M; Carrozza MC; Popović DB J Neuroeng Rehabil; 2010 Aug; 7():42. PubMed ID: 20731834 [TBL] [Abstract][Full Text] [Related]
5. Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses. Clemente F; D'Alonzo M; Controzzi M; Edin BB; Cipriani C IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1314-1322. PubMed ID: 26584497 [TBL] [Abstract][Full Text] [Related]
6. Closed-Loop Force Control by Biorealistic Hand Prosthesis With Visual and Tactile Sensory Feedback. Zhang Z; Xie A; Chou CH; Liang W; Zhang J; Bi S; Lan N IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2939-2949. PubMed ID: 39110556 [TBL] [Abstract][Full Text] [Related]
8. The SSSA-MyHand: A Dexterous Lightweight Myoelectric Hand Prosthesis. Controzzi M; Clemente F; Barone D; Ghionzoli A; Cipriani C IEEE Trans Neural Syst Rehabil Eng; 2017 May; 25(5):459-468. PubMed ID: 27305682 [TBL] [Abstract][Full Text] [Related]
9. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control? Ninu A; Dosen S; Muceli S; Rattay F; Dietl H; Farina D IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1041-52. PubMed ID: 24801625 [TBL] [Abstract][Full Text] [Related]
10. Electrotactile Feedback Improves Grip Force Control and Enables Object Stiffness Recognition While Using a Myoelectric Hand. Chai G; Wang H; Li G; Sheng X; Zhu X IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1310-1320. PubMed ID: 35533165 [TBL] [Abstract][Full Text] [Related]
11. Stereovision and augmented reality for closed-loop control of grasping in hand prostheses. Markovic M; Dosen S; Cipriani C; Popovic D; Farina D J Neural Eng; 2014 Aug; 11(4):046001. PubMed ID: 24891493 [TBL] [Abstract][Full Text] [Related]
12. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Witteveen HJ; Rietman HS; Veltink PH Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348 [TBL] [Abstract][Full Text] [Related]
13. Discrete Vibro-Tactile Feedback Prevents Object Slippage in Hand Prostheses More Intuitively Than Other Modalities. Aboseria M; Clemente F; Engels LF; Cipriani C IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1577-1584. PubMed ID: 29994712 [TBL] [Abstract][Full Text] [Related]
14. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis. Dosen S; Markovic M; Somer K; Graimann B; Farina D J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323 [TBL] [Abstract][Full Text] [Related]
15. Design and technical construction of a tactile display for sensory feedback in a hand prosthesis system. Antfolk C; Balkenius C; Lundborg G; Rosén B; Sebelius F Biomed Eng Online; 2010 Sep; 9():50. PubMed ID: 20840758 [TBL] [Abstract][Full Text] [Related]
16. Effects of vibrotactile feedback and grasp interface compliance on perception and control of a sensorized myoelectric hand. Pena AE; Rincon-Gonzalez L; Abbas JJ; Jung R PLoS One; 2019; 14(1):e0210956. PubMed ID: 30650161 [TBL] [Abstract][Full Text] [Related]
17. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees. Strbac M; Isakovic M; Belic M; Popovic I; Simanic I; Farina D; Keller T; Dosen S IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2133-2145. PubMed ID: 28600254 [TBL] [Abstract][Full Text] [Related]
18. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels. De Nunzio AM; Dosen S; Lemling S; Markovic M; Schweisfurth MA; Ge N; Graimann B; Falla D; Farina D Exp Brain Res; 2017 Aug; 235(8):2547-2559. PubMed ID: 28550423 [TBL] [Abstract][Full Text] [Related]
19. Multichannel Electrotactile Feedback With Spatial and Mixed Coding for Closed-Loop Control of Grasping Force in Hand Prostheses. Dosen S; Markovic M; Strbac M; Belic M; Kojic V; Bijelic G; Keller T; Farina D IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):183-195. PubMed ID: 27071179 [TBL] [Abstract][Full Text] [Related]
20. Electrotactile EMG feedback improves the control of prosthesis grasping force. Schweisfurth MA; Markovic M; Dosen S; Teich F; Graimann B; Farina D J Neural Eng; 2016 Oct; 13(5):056010. PubMed ID: 27547992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]