These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 29985150)

  • 1. Compliant Prosthetic Wrists Entail More Natural Use Than Stiff Wrists During Reaching, Not (Necessarily) During Manipulation.
    Kanitz G; Montagnani F; Controzzi M; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1407-1413. PubMed ID: 29985150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A passive wrist with switchable stiffness for a body-powered hydraulically actuated hand prosthesis.
    Montagnani F; Smit G; Controzzi M; Cipriani C; Plettenburg DH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1197-1202. PubMed ID: 28813984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is it Finger or Wrist Dexterity That is Missing in Current Hand Prostheses?
    Montagnani F; Controzzi M; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):600-9. PubMed ID: 25675462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible and static wrist units in upper limb prosthesis users: functionality scores, user satisfaction and compensatory movements.
    Deijs M; Bongers RM; Ringeling-van Leusen ND; van der Sluis CK
    J Neuroeng Rehabil; 2016 Mar; 13():26. PubMed ID: 26979272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromyographically controlled prosthetic wrist improves dexterity and reduces compensatory movements without added cognitive load.
    Olsen CD; Olsen NR; Stone ES; Tully TN; Paskett MD; Teramoto M; Clark GA; George JA
    Sci Rep; 2024 Oct; 14(1):23248. PubMed ID: 39370497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a modular and compliant wrist module for upper limb prosthetics.
    Demofonti A; Carpino G; Tagliamonte NL; Baldini G; Bramato L; Zollo L
    Anat Rec (Hoboken); 2023 Apr; 306(4):764-776. PubMed ID: 35362663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Categorization of compensatory motions in transradial myoelectric prosthesis users.
    Hussaini A; Zinck A; Kyberd P
    Prosthet Orthot Int; 2017 Jun; 41(3):286-293. PubMed ID: 27473642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting arm posture synergies in activities of daily living to control the wrist rotation in upper limb prostheses: A feasibility study.
    Montagnani F; Controzzi M; Cipriani C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2462-5. PubMed ID: 26736792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis.
    Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Physics-based Virtual Reality Environment to Quantify Functional Performance of Upper-limb Prostheses.
    Odette K; Fu Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3807-3810. PubMed ID: 31946703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compensatory movements of transradial prosthesis users during common tasks.
    Carey SL; Jason Highsmith M; Maitland ME; Dubey RV
    Clin Biomech (Bristol); 2008 Nov; 23(9):1128-35. PubMed ID: 18675497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wrist autonomy based on upper-limb synergy: a pilot study.
    Peng C; Yang D; Ge Z; Liu H
    Med Biol Eng Comput; 2023 May; 61(5):1149-1166. PubMed ID: 36689082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic analysis of impairments and compensatory motor behavior during prosthetic grasping in below-elbow amputees.
    Touillet A; Gouzien A; Badin M; Herbe P; Martinet N; Jarrassé N; Roby-Brami A
    PLoS One; 2022; 17(11):e0277917. PubMed ID: 36399487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Elbow Control for a Myoelectric Transhumeral Prosthesis.
    Alshammary NA; Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):468-476. PubMed ID: 29432114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of compensatory trunk movements during prosthetic upper limb reaching tasks.
    Metzger AJ; Dromerick AW; Holley RJ; Lum PS
    Arch Phys Med Rehabil; 2012 Nov; 93(11):2029-34. PubMed ID: 22449551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Automatic Control of Upper-Limb Prosthesis Wrists Using Gaze-Centered Eye Tracking and Deep Learning.
    Karrenbach M; Boe D; Sie A; Bennett R; Rombokas E
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():340-349. PubMed ID: 35100118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transradial prostheses: Trends in development of hardware and control systems.
    Semasinghe CL; Madusanka DGK; Ranaweera RKPS; Gopura RARC
    Int J Med Robot; 2019 Feb; 15(1):e1960. PubMed ID: 30248231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of compensatory shoulder movements, functionality and satisfaction in transradial amputees fitted with two prosthetic myoelectric hooks.
    Touillet A; Billon-Grumillier C; Pierret J; Herbe P; Martinet N; Loiret I; Paysant J
    PLoS One; 2023; 18(2):e0272855. PubMed ID: 36730223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Accelerometers in the Control of Practical Prosthetic Arms.
    Kyberd PJ; Poulton A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1884-1891. PubMed ID: 28422662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.