These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 29985160)

  • 1. Growth mode evolution during (100)-oriented β-Ga
    Cheng Z; Hanke M; Galazka Z; Trampert A
    Nanotechnology; 2018 Sep; 29(39):395705. PubMed ID: 29985160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and surface characterizations of 2D β-In
    Nallasani UR; Wu SK; Diep NQ; Lin YY; Wen HC; Chou WC; Chia CH
    Sci Rep; 2024 Mar; 14(1):5146. PubMed ID: 38429525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Beam Epitaxy of β-(In
    Mazzolini P; Wouters C; Albrecht M; Falkenstein A; Martin M; Vogt P; Bierwagen O
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12793-12804. PubMed ID: 38422376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homoepitaxial Growth of Metal Halide Crystals Investigated by Reflection High-Energy Electron Diffraction.
    Chen P; Kuttipillai PS; Wang L; Lunt RR
    Sci Rep; 2017 Jan; 7():40542. PubMed ID: 28071732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote homoepitaxy of ZnO microrods across graphene layers.
    Jeong J; Min KA; Shin DH; Yang WS; Yoo J; Lee SW; Hong S; Hong YJ
    Nanoscale; 2018 Dec; 10(48):22970-22980. PubMed ID: 30500036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.
    Chang WH; Wu SY; Lee CH; Lai TY; Lee YJ; Chang P; Hsu CH; Huang TS; Kwo JR; Hong M
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1436-41. PubMed ID: 23360590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Domain and Atomically Flat Surface of κ-Ga
    Nishinaka H; Ueda O; Tahara D; Ito Y; Ikenaga N; Hasuike N; Yoshimoto M
    ACS Omega; 2020 Nov; 5(45):29585-29592. PubMed ID: 33225190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review: Geometric interpretation of reflection and transmission RHEED patterns.
    Hafez MA; Zayed MK; Elsayed-Ali HE
    Micron; 2022 Aug; 159():103286. PubMed ID: 35700687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stacking faults in β-Ga
    Yamaguchi H; Kuramata A
    J Appl Crystallogr; 2018 Oct; 51(Pt 5):1372-1377. PubMed ID: 30279639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of CuGaSe
    Thiru S; Asakawa M; Honda K; Kawaharazuka A; Tackeuchi A; Makimoto T; Horikoshi Y
    AIP Adv; 2015 Feb; 5(2):027120. PubMed ID: 25874158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Heteroepitaxy of Thick
    Zhang W; Zhang H; Zhang S; Wang Z; Liu L; Zhang Q; Hu X; Liang H
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlating in situ RHEED and XRD to study growth dynamics of polytypism in nanowires.
    Jakob J; Schroth P; Feigl L; Al Humaidi M; Al Hassan A; Davtyan A; Hauck D; Pietsch U; Baumbach T
    Nanoscale; 2021 Aug; 13(30):13095-13107. PubMed ID: 34477793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of azimuthal plots for reflection high-energy positron diffraction (RHEPD) and reflection high-energy electron diffraction (RHEED) for Si(111) surface.
    Mitura Z
    Acta Crystallogr A Found Adv; 2020 May; 76(Pt 3):328-333. PubMed ID: 32356783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Features of twins and stacking faults in silver nanorice and electron-beam irradiation effect.
    Shi H; Dong B; Wang W
    Nanoscale; 2012 Oct; 4(20):6389-92. PubMed ID: 22951629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic Monte Carlo simulations of GaN homoepitaxy on c- and m-plane surfaces.
    Xu D; Zapol P; Stephenson GB; Thompson C
    J Chem Phys; 2017 Apr; 146(14):144702. PubMed ID: 28411601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Effective Approach to Improving Cadmium Telluride (111)A Surface by Molecular-Beam-Epitaxy Growth of Tellurium Monolayer.
    Ren J; Fu L; Bian G; Su J; Zhang H; Velury S; Yukawa R; Zhang L; Wang T; Zha G; Guo R; Miller T; Hasan MZ; Chiang TC
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):726-35. PubMed ID: 26672795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-Time Characterization Using in situ RHEED Transmission Mode and TEM for Investigation of the Growth Behaviour of Nanomaterials.
    Jo J; Tchoe Y; Yi GC; Kim M
    Sci Rep; 2018 Jan; 8(1):1694. PubMed ID: 29374190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer.
    Muhammed MM; Roldan MA; Yamashita Y; Sahonta SL; Ajia IA; Iizuka K; Kuramata A; Humphreys CJ; Roqan IS
    Sci Rep; 2016 Jul; 6():29747. PubMed ID: 27412372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iso-oriented monolayer α-MoO3(010) films epitaxially grown on SrTiO3(001).
    Du Y; Li G; Peterson EW; Zhou J; Zhang X; Mu R; Dohnálek Z; Bowden M; Lyubinetsky I; Chambers SA
    Nanoscale; 2016 Feb; 8(5):3119-24. PubMed ID: 26788784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The In situ growth of Nanostructures on Surfaces (INS) endstation of the ESRF BM32 beamline: a combined UHV-CVD and MBE reactor for in situ X-ray scattering investigations of growing nanoparticles and semiconductor nanowires.
    Cantelli V; Geaymond O; Ulrich O; Zhou T; Blanc N; Renaud G
    J Synchrotron Radiat; 2015 May; 22(3):688-700. PubMed ID: 25931085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.