BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29985373)

  • 1. In Vivo Nanovector Delivery of a Heart-specific MicroRNA-sponge.
    Kent OA; Steenbergen C; Das S
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29985373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.
    Jung J; Yeom C; Choi YS; Kim S; Lee E; Park MJ; Kang SW; Kim SB; Chang S
    Oncotarget; 2015 Aug; 6(24):20370-87. PubMed ID: 26284487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. miRNAsong: a web-based tool for generation and testing of miRNA sponge constructs in silico.
    Barta T; Peskova L; Hampl A
    Sci Rep; 2016 Nov; 6():36625. PubMed ID: 27857164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a miRNA sponge for the miR-17 miRNA family as a therapeutic strategy against vulvar carcinoma.
    de Melo Maia B; Ling H; Monroig P; Ciccone M; Soares FA; Calin GA; Rocha RM
    Mol Cell Probes; 2015 Dec; 29(6):420-426. PubMed ID: 26297962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of a microRNA expression vector for function analysis of microRNA.
    Furukawa N; Sakurai F; Katayama K; Seki N; Kawabata K; Mizuguchi H
    J Control Release; 2011 Feb; 150(1):94-101. PubMed ID: 21146569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting and Regulating of an Oncogene via Nanovector Delivery of MicroRNA using Patient-Derived Xenografts.
    Sun S; Wang Y; Zhou R; Deng Z; Han Y; Han X; Tao W; Yang Z; Shi C; Hong D; Li J; Shi D; Zhang Z
    Theranostics; 2017; 7(3):677-693. PubMed ID: 28255359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single miRNA and miRNA sponge expression system for efficient modulation of miR-223 availability in mammalian cells.
    Huerta-Zavala ML; Lopez-Castillejos ES; Requenez-Contreras JL; Granados-Riveron JT; Aquino-Jarquin G
    J Gene Med; 2019 Aug; 21(8):e3100. PubMed ID: 31166636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-221 sponge therapy attenuates neointimal hyperplasia and improves blood flows in vein grafts.
    Wang XW; He XJ; Lee KC; Huang C; Hu JB; Zhou R; Xiang XY; Feng B; Lu ZQ
    Int J Cardiol; 2016 Apr; 208():79-86. PubMed ID: 26828387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells.
    Tay FC; Lim JK; Zhu H; Hin LC; Wang S
    Adv Drug Deliv Rev; 2015 Jan; 81():117-27. PubMed ID: 24859534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guidelines on Designing MicroRNA Sponges: From Construction to Stable Cell Line.
    Ortega MM; Bouamar H
    Methods Mol Biol; 2017; 1509():221-233. PubMed ID: 27826931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of Multi-Potent MicroRNA Sponge and Its Functional Evaluation.
    Chang S
    Methods Mol Biol; 2018; 1699():201-209. PubMed ID: 29086379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice.
    Pramanik D; Campbell NR; Karikari C; Chivukula R; Kent OA; Mendell JT; Maitra A
    Mol Cancer Ther; 2011 Aug; 10(8):1470-80. PubMed ID: 21622730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triplex-forming MicroRNAs form stable complexes with HIV-1 provirus and inhibit its replication.
    Kanak M; Alseiari M; Balasubramanian P; Addanki K; Aggarwal M; Noorali S; Kalsum A; Mahalingam K; Pace G; Panasik N; Bagasra O
    Appl Immunohistochem Mol Morphol; 2010 Dec; 18(6):532-45. PubMed ID: 20502318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MiRNA-10b sponge: An anti-breast cancer study in vitro.
    Liang AL; Zhang TT; Zhou N; Wu CY; Lin MH; Liu YJ
    Oncol Rep; 2016 Apr; 35(4):1950-8. PubMed ID: 26820121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Misprocessing and functional arrest of microRNAs by miR-Pirate: roles of miR-378 and miR-17.
    Deng Z; Yang X; Fang L; Rutnam ZJ; Yang BB
    Biochem J; 2013 Mar; 450(2):375-86. PubMed ID: 23210454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Construction of miRNA sponge targeting miR-20a and stable expression in Jurkat leukemia cell line].
    Wu SQ; Xu ZZ; Lin J; Zhan R
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2012 Oct; 20(5):1056-62. PubMed ID: 23114118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DDAH1-V3 transcript might act as miR-21 sponge to maintain balance of DDAH1-V1 in cultured HUVECs.
    Kuang DB; Zhou JP; Yu LY; Zeng WJ; Xiao J; Zhu GZ; Zhang ZL; Chen XP
    Nitric Oxide; 2016 Nov; 60():59-68. PubMed ID: 27663503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Plasmid-mediated miRNA-1-2 specifically inhibits Hand2 protein expression in H9C2 cells].
    Shan ZX; Lin QX; Deng CY; Zhou ZL; Zhang XC; Fu YH; Yu XY
    Nan Fang Yi Ke Da Xue Xue Bao; 2008 Aug; 28(9):1559-61, 1567. PubMed ID: 18819867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional Nanoparticles Facilitate Molecular Targeting and miRNA Delivery to Inhibit Atherosclerosis in ApoE(-/-) Mice.
    Kheirolomoom A; Kim CW; Seo JW; Kumar S; Son DJ; Gagnon MK; Ingham ES; Ferrara KW; Jo H
    ACS Nano; 2015 Sep; 9(9):8885-97. PubMed ID: 26308181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antisense inhibition of microRNA-21 and microRNA-221 in tumor-initiating stem-like cells modulates tumorigenesis, metastasis, and chemotherapy resistance in pancreatic cancer.
    Zhao Y; Zhao L; Ischenko I; Bao Q; Schwarz B; Nieß H; Wang Y; Renner A; Mysliwietz J; Jauch KW; Nelson PJ; Ellwart JW; Bruns CJ; Camaj P
    Target Oncol; 2015 Dec; 10(4):535-48. PubMed ID: 25639539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.