BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 29985404)

  • 1. Microtubule minus-end aster organization is driven by processive HSET-tubulin clusters.
    Norris SR; Jung S; Singh P; Strothman CE; Erwin AL; Ohi MD; Zanic M; Ohi R
    Nat Commun; 2018 Jul; 9(1):2659. PubMed ID: 29985404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processive Kinesin-14 HSET Exhibits Directional Flexibility Depending on Motor Traffic.
    Reinemann DN; Norris SR; Ohi R; Lang MJ
    Curr Biol; 2018 Jul; 28(14):2356-2362.e5. PubMed ID: 30017484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mechanistic model for the organization of microtubule asters by motor and non-motor proteins in a mammalian mitotic extract.
    Chakravarty A; Howard L; Compton DA
    Mol Biol Cell; 2004 May; 15(5):2116-32. PubMed ID: 14978218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle.
    Mountain V; Simerly C; Howard L; Ando A; Schatten G; Compton DA
    J Cell Biol; 1999 Oct; 147(2):351-66. PubMed ID: 10525540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule minus-end stability is dictated by the tubulin off-rate.
    Strothman C; Farmer V; Arpağ G; Rodgers N; Podolski M; Norris S; Ohi R; Zanic M
    J Cell Biol; 2019 Sep; 218(9):2841-2853. PubMed ID: 31420452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubule patterning in the presence of moving motor proteins.
    White D; de Vries G; Martin J; Dawes A
    J Theor Biol; 2015 Oct; 382():81-90. PubMed ID: 26159812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proper organization of microtubule minus ends is needed for midzone stability and cytokinesis.
    Cai S; Weaver LN; Ems-McClung SC; Walczak CE
    Curr Biol; 2010 May; 20(9):880-5. PubMed ID: 20434340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules.
    Cai S; Weaver LN; Ems-McClung SC; Walczak CE
    Mol Biol Cell; 2009 Mar; 20(5):1348-59. PubMed ID: 19116309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organization of motors and microtubules in lipid-monolayered droplets.
    Baumann H; Surrey T
    Methods Cell Biol; 2015; 128():39-55. PubMed ID: 25997341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubule cytoskeleton remodeling by acentriolar microtubule-organizing centers at the entry and exit from mitosis in Drosophila somatic cells.
    Moutinho-Pereira S; Debec A; Maiato H
    Mol Biol Cell; 2009 Jun; 20(11):2796-808. PubMed ID: 19369414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubule motor Ncd induces sliding of microtubules in vivo.
    Oladipo A; Cowan A; Rodionov V
    Mol Biol Cell; 2007 Sep; 18(9):3601-6. PubMed ID: 17596520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial variation of microtubule depolymerization in large asters.
    Ishihara K; Decker F; Caldas P; Pelletier JF; Loose M; Brugués J; Mitchison TJ
    Mol Biol Cell; 2021 Apr; 32(9):869-879. PubMed ID: 33439671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors.
    Najma B; Wei WS; Baskaran A; Foster PJ; Duclos G
    Proc Natl Acad Sci U S A; 2024 Jan; 121(2):e2300174121. PubMed ID: 38175870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism.
    Kreitzer G; Liao G; Gundersen GG
    Mol Biol Cell; 1999 Apr; 10(4):1105-18. PubMed ID: 10198060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural and dynamic visualization of the interaction between MAP7 and microtubules.
    Adler A; Bangera M; Beugelink JW; Bahri S; van Ingen H; Moores CA; Baldus M
    Nat Commun; 2024 Mar; 15(1):1948. PubMed ID: 38431715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organized optimal packing of kinesin-5-driven microtubule asters scales with cell size.
    Khetan N; Pruliere G; Hebras C; Chenevert J; Athale CA
    J Cell Sci; 2021 May; 134(10):. PubMed ID: 34080632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of truncated gamma-tubulins disrupts mitotic aster formation in Xenopus oocyte extracts.
    Kotani T; Yamashita M
    Biochem J; 2005 Aug; 389(Pt 3):611-7. PubMed ID: 15819612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is gamma-tubulin dependent.
    Hannak E; Oegema K; Kirkham M; Gönczy P; Habermann B; Hyman AA
    J Cell Biol; 2002 May; 157(4):591-602. PubMed ID: 12011109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors.
    Furuta K; Furuta A; Toyoshima YY; Amino M; Oiwa K; Kojima H
    Proc Natl Acad Sci U S A; 2013 Jan; 110(2):501-6. PubMed ID: 23267076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational model of dynein-dependent self-organization of microtubule asters.
    Cytrynbaum EN; Rodionov V; Mogilner A
    J Cell Sci; 2004 Mar; 117(Pt 8):1381-97. PubMed ID: 14996905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.